Column Removal During Progressive Sampling

Gabor Médlli, Siavash Amirrezvani, Felix Chen, Neil Russell
PredictionWorks, Research Centre
2628 Granville Street, Vancouver, B.C., CANADA, V6H 3H8
{gmelli, siavash, felix, ngr} @predictionworks.com

Abstract

Sampling and column (variable) selection are commonly used to gain insights that improve
data mining performance on very large databases. This paper proposes an algorithm named
CRPS (for Column Removal during Progressive Sampling) that integrates sampling and
column reduction. This agorithm delivers a predictive model in less time than current
approaches in tasks where not al columns are relevant. CRPS works in conjunction with
predictive modeling algorithms that decide which columns to include in their models such as
decision tree and logistic regression. The CRPS agorithm iteratively models on progressively
larger samples and also removes some of the columns that were not used in the previous sample
in order to reduce the amount of overall work. Other advantages of CRPS include the
requirement of less memory to process the dataset, a ranking of relevance for each column, and
the generation of simpler models based on fewer columns. The algorithm's time complexity is
dependent on the number of columns in the final mode and not the number of columns in the
dataset. In the worst case when al columns are required by the model, CRPS does not increase
the time complexity of progressive sampling, but could double the time of directly modeling all
of the data. In more practical cases where some of columns are not relevant to the task, CRPS
offers an advantage over traditional predictive modeling. Empirical results velidate CRPS's
efficiency with no degradation in accuracy.

1 Introduction

Predictive data mining algorithms are required to efficiently produce accurate and simple
models for datasets with large numbers of rows (instances) and columns (features). Research
into efficiency has focused on building faster agorithms, but some work has also gone into
reducing the number of rows and columns to be evauated. While there has been progress to
efficiently reduce the number of rows from the search, such as through “progressive sampling”
in [14], less progress has been made to efficiently reduce the number of columns. Much of the
research in column reduction focuses on accuracy and model simplification at the expense of
time. Given m columns, the successful “wrapper” approach for example adds a factor of n? to
the underlying algorithm [8]. Reducing the number of columns, however, has a greater impact
on computational complexity than reducing rows. The “curse of dimensionality” implies that
most state-of-the-art induction algorithms have greater than linear time complexity on the
number of columns while only linear time complexity on the number of rows.

In this paper we propose an efficient column reduction algorithm named CRPS that adds no
computational factor to the overal processing time. The agorithm in fact changes the
computational complexity of an underlying inductive agorithm from O(n,m), where n is the
number or rows and m is the number of columns, to O(n,j) where j is the number of relevant
columns to the underlying algorithm. As datasets become wider, such as the datasets presented
during the KDD conference competition, greater attention will be paid to algorithms whose
time complexity is measured not by the total number of columns in the dataset, but by the much
smaller number of relevant columns.

The essence of CRPS is to use some of the column relevance information available from
modeling smaller samples to eliminate irrelevant columns for larger samples of the dataset.
Specifically, the proposed agorithm builds models on increasingly larger data samples while
constraining the number of columns considered until no more reduction occurs. The name
CRPS is derived from the phrase Column Reduction during Progressive Sampling. To
efficiently detect which columns appear to be relevant in any one sample, the CRPS algorithm
works by using state-of-the-art predictive modeling algorithms that explicitly decide which
columns to include in their mode. Two such algorithms are decision tree and logistic
regression. In a sense, CRPS uses the underlying algorithm’s ability to avoid overfitting to
determine which columns are not relevant to the task at hand.

There are other valuable consequences from the use of CRPS. One useful output is the
ranking of each column's relevance from sample to sample. This information allows an analyst
to focus their attention on fewer columns. Fewer columns also mean that the final process
against al the rows in the dataset will require less memory. This would allow larger datasets to
be processed in memory. Fewer columns may aso be referenced by CRPS generated models
due to the remova of irrelevant columns during earlier samples. This exclusion of irrelevant
columns may also increase accuracy. However, if relevant columns are accidentally removed
then the final model may turn out to be less accurate. Empirical testing shows that CRPS
requires considerably less time to deliver its model, produces somewhat simpler models, and
does not impact accuracy.

The subsequent sections of the paper describe the CRPS agorithm in detail and analyze the
algorithm’s time complexity. Empirical results are then presented. The paper concludes with a
summary of related research and alist of open research questions.

2 The CRPS Algorithm

In this section we present the details of the CRPS agorithm, which performs column
reduction during progressive sampling. The agorithm is used in tandem with model-based
predictive modeling algorithms that explicitly chose which columns to include in their output.
After each sample is trained the information about which columns were used in the model
progress to be included in the modeling of a larger sample. Randomly selected portions of the
remaining columns are also included. As sampling proceeds, the number of randomly chosen
columns is slowly decreased. As the sample size increases the number of columns used will
begin to converge with the number of relevant columns required to produce the model. Table 1
presents the steps followed by CRPS.

Table 1 - Overview of CRPS algorithm

Start with all columnsin subset ¢;

For each sample n; in sampling schedule N
Construct model on rows n; and columns ¢;
) = relevant columns from model
&) = asubset of unused columns
New column subset ¢; = ¢) O &)

Return last constructed model

The next sections describe CRPS' sampling schedule N, its column relevancy function &),
and its column removal schedule C that is created by the unused column selector). A more
detailed agorithm is presented afterwards along with a computational complexity analysis.

2.1 Sampling Schedule - N

Several sampling schedules N = {ng,ny,n ,,..., N} are possible for given a dataset N with n
rows. The value k will refer to the final sample to be tested. To achieve the goals of efficient
information passing the schedule must continually increase until ni=n. Of the approaches that
were tested the geometric schedule proposed in [[14]] was finally selected. This choice became
apparent after tests on simpler approaches such as the use of only one sample (k=1). The use of
a single small sample to determine column relevancy always resulted in significant reduction in
processing time was, but the final model’s accuracy suffered. The less aggressive approach of
using a single large sample to determined relevancy, say one-haf of the rows, proved to be
effective in terms of accuracy, but offered little computational advantage. The lack of
advantage in speed-up is due to the fact that the modeling the large sample will consume half of
the time required to build the entire dataset. Although using one single sample is not an
effective approach to column reduction, the insight that some column relevance can be detected
from samples motivated further research.

The fact that the use of one small sample occasionally achieved good results inspired the
cregtion of a progressive sampling schedule that reduced the number of columns tested after
each sample. To achieve significant gains in computational time the sample sizes were
increased faster than the linear (arithmetic) rate proposed in [JOHN96]. The specific schedule
used was ny;=250 and a doubling afterwards, or N = {ng=250x2°, n;=250x2*, n ,=250x2%,..., n
«t. This alowed for more work to be done on smaller samples that were computationally
inexpensive. By the time that the larger samples were tested a significant number of irrdlevant
columns would be eliminated. Another advantage to this schedule is that it offers a natural fit
with the schedule proposed in [[14]]. The progressive sampling approach has been shown to be
effective in the discovery of the minimum number of rows required to attain a plateau in
accuracy. According to their research a starting number of ny=250 is acceptable.

Although the proposed schedule can be produced before data processing, there are
opportunities to skip past some samples. For example, in the case where no progress in column
reduction will occur from a specific sample onward, testing can skip directly to the final
sample. As demonstrated in the empirical tests, this opportunity occurred with the ‘letter’
dataset which has only relevant columns.

2.2 Column Relevancy Function - ¢()

To achieve its scale-up objective the CRPS algorithm requires an inexpensive method to
detect column relevance information after each sample has been modeled. The column
relevancy function used in CRPS is simply to review which columns where used in the model
and which were not. The intuition behind this approach is that state-of-the-art induction
algorithms have evolved significant abilities to avoid overfitting within their stopping criterions
and pruning techniques. This approach has also been successfully used by [4] to pass column
relevance information from a decision tree to a nearest-neighbor algorithm.

CRPS should be applicable to any induction algorithms that explicitly choose their columns.
Examples include decision tree algorithms such as C4.5 [15], forward-selection logistic
regression [1], and the naive-bayes classifier [5]. Even agorithms that do not create a model
such as instance-based approaches commonly perform a column relevancy step in advance [2].
One possible exception to this rule includes neural networks, which commonly operate as a
black box.

Once a mode is built for a sample the column relevancy function simply traverses the
model to extract the set of relevant columns for that sample. The column relevance function

will be labeled as (M), where M; is the model constructed on the i sample. For the logistic
regression algorithm, traversal detects which columns were used as one of the coefficients of
the equation. If, for example, the equation contains five coefficients then the column relevance
function would return the five (5) columns associated to each coefficient. For decision tree
algorithm, the relevancy function returns the set column used within the internal nodes of the
tree as proposed in [4].

2.3 Column Removal Schedule- C

Given a sampling schedule N and a column relevancy function ¢) the remaining question
for iterative column reduction is the rate at which columns should be removed from sample to
sample. CRPS column reduction schedule C = {¢,C,Cy, ..., C} IS dynamically created as each
sample is analyzed. Each ¢ represents the columns that, aong with rows in sample n;, are
analyzed by the underlying algorithm A(). To reduce the amount of effort expended on larger
samples the proposed schedule reduces columns most quickly during the early stages of the
sampling. By the time that the larger samples are modeled most of the irrelevant columns
would have been identified and discarded. Another consideration for the removal schedule is
that as the sample size n; approaches the size of the entire dataset n, then most, if not all, of the
relevant columns should have been detected. Therefore, the last modeling step should not
consider any random columns whatsoever and it should base column relevance solely on the
second-to-last ny.; modeling step.

Each column subset, ¢, in the column remova schedule C is based on relevant columns
from the past sample ¢(M;.;) and a subset from the remaining columns & (). The subset of
remaining columns is based on the sample number i and how close the process is to the fina
samplen;:

G = @Miq) + J(ni)

From sample to sample random column selector &n;,i) returns fewer columns with the use
of thefollowing function:

Ani) =i x (InkHrf)/nl.

Assume a dataset with 36 columns and 8,000 rows, and also a first sample size of two
hundred fifty (Jno|=250) rows. All columns are used to build a model on sample s,. Assume that
eight (8) columns were used in the model on sample ng. When the next model is built on a
sample with five hundred rows (Jn;|=500) only twenty-one (21) columns are used. The twenty-
one columns include the eight columns deemed relevant in the s, model, and an additional
thirteen (0 (ny,1)=13) columns that are randomly selected. The number thirteen is determined
with the following calculation ((36-8) x 1/2 x (8000-500)/8000 = 8 + (28 x 1/2 x 15/16). If the
number of relevant columns from sample to sample stays a 8 columns then the final schedule
would be: C = {¢y=36, ¢;=21, ¢,=15, ¢3=13, ¢4=10, c,=8}

2.4 Algorithm Analysis

The effect on time complexity from the combination of the three components above is
dependent on the number of rows n and columns m. The complexity is aso dependent on the
number of relevant columns discovered at each sample, j;. Table 2 presents a more detailed
description of the algorithm under analysis.

Table 2: The CRPS agorithm.

Inputs: Sisaset of examples
A(n;, ¢) an induction agorithm that accepts a set of rows n; and a set of columns ¢

Outputs: M - apredictive model
R - alist of ranked columns

Procedure CRPS (S, A)
n=row countinS

i=0 /I set sample counter
n; =250 /I starting sample size
¢ = S.cols // working set of columns

WHILEn; <n // while morerowsto process
M; =modd induced by A(n;, ¢)
A(ni) =i x (Inkni/In
Ci = @(M;.1) O (Sccols = @(Mi.p)) XA (n;,i))
i=i+1 //increment sample counter
n=n x2 [/ doublethe samplesize

END WHILE

The worst-case time complexity for CRPS occurs when al, or amost all, of the columns are
labeled as relevant at each sample. When this is the case CRPS will create a model based on all
of the rows and columns at its last step, but will aso have trained models on severa
intermediary samples. Assume that the computational complexity of the underlying modeling
algorithm O(f(m,n)) has linear complexity on the number of rows n. At the last sample, the time
required is f(m,n). Because of the geometric sampling schedule the second-to-last sample
processes only half of the rows, n.;= n/2, but all of the columns because they are al relevant.
The time required at this step is f(m,n/2). As we work backwards through the samples the
computational sequence becomes f(m,n) + f(m,n/2) + f(m,n/4) + ... + f(m,ny). The sequence can
be rewritten as f(m,n) x (1 + %2+ ¥4 ...) which at the limit becomes f(m,n) x 2. In the worst case,
CRPS requires twice as much time as modeling the entire dataset. This complexity is identical
to that of progressive sampling.

Although many datasets show worst-case characteristics, the intention is to apply CRPS to
datasets with a substantial proportion of irrelevant attributes. The average-case complexity
requires several assumptions to facilitate its calculation. The first assumption is that the
underlying induction algorithm has linear complexity on both n and on m, O(f(n,m)) = nm. In
general a state-of-the-art algorithm will have greater than linear complexity on the number of
columns. Therefore this is a pessimistic assumption because CRPS will not recognize the
benefit that it will likely recognize in practice from having reduced the number of columns.
Halving the number of columns on the last and most time consuming step, for example, will
usually save more than haf of the processing time. The next assumption is that the number of
relevant columns at each sample M;) remains at constant value j (j<m). Because of the linear
assumption on f(m,n) the processing can be divided into two components: the processing on the
j relevant columns, and the processing on the randomly selected columns in schedule C.

At the limit the work on relevant columns approaches 2nj as it did for the worst-case on al
column. The work that occurs above the darker line in Figure 1 is the work performed on non-

relevant columns. The work performed follows the sequence: 250x(m+j)/1 + 250x2x(m+)/2 +
.. + 0 which reduces to (mj) x ng logy(n/ng). Because this function is contained by jn, the
average case complexity of CRPS, given the assumptions stated earlier, isjn.

The best case occurs when no columns are labeled relevant j;=0. The sum of the area still
holds f(n,m,j) = jn + (m+j)log(n). With j=0 however the function reduces to mlog(n). The best
case complexity is O(f())=mlog(n).

2.5 Example

This section illustrates the application of the CRPS algorithm to one of the datasets from the
empirical tests: mushroom. The presentation will facilitate the discussions on empirical results
and comparisons. The mushroom dataset is a two-class problem (edible/nonedible) with 8,196
rows and 22 columns of low-order nominal datatype. This is a small dataset, however, it is still
a good candidate for CRPS because less than one-half of the 22 columns are used by the model
when trained on the entire dataset. The underlying induction algorithm used in this example
was Logistic Regression.

On the first iteration a mode is built on 250 random rows and al of the columns. Assume
that 9 columns were used in the model. On the second iteration a mode is built on 500 random
rows, the 9 ‘relevant’ columns used in the previous model and (36-9)/2 random columns. The
process iterates until all of the rows are modeled.

20,000

—¥— ProgressiveSampling
15,000 -—e—All Daa
—— CRPS

seconds)
=
o
o
3

time (
ol
o
3

o

250 500 1000 2000 4000 8124
samplesize
Figure 1 - Thetime required by Logistic Regression to process the mushroom

dataset at different sample points. The “All Data’ datais for non-progressive training
of models for that given sample size.

The savings in time between CRPS and progressive sample are apparent in Figure 2 and
Figure 3. As the sample size increases the savings in time between

100,000

—¥— ProgressiveSampling
10,000 —o—All Data

——CRPS
1,000 +

100 |

time (seconds)

10 -

250 500 1000 2000 4000 8124
samplesize

Figure 3 - The time required by Logistic Regression to process the mushroom dataset at
different sample points. This figure is identical to Figure 2 except with the y-axis is in
logarithmic scale.

CRPS and progressive sampling incresse. Interestingly there also appears to be a substantial
time savings between CRPS and modeling al of the data just once. The improvement appears
to grow as the sample size increases. The effect of CRPS on model accuracy is illustrated in
Figure 4. The effect on this dataset is negligible relative to modeling all of the data

100
80 N - PU—
— —— * v v
S
7%
3 40 |
(5]
< 0l —o—All ——CRPS
0
250 500 1000 2000 4000 8124
Sample Size

Figure 4 - The accuracy achieved by Logistic Regression on the mushroom dataset at
different sample points.

Given the improvement in time relative to both progressive sampling and simple modeling,
with no degradation in accuracy, the CRPS approach would be selected for this specific dataset.

3 Empirical Results

The use of column removal during progressive sampling is meant to scale-up the underlying
induction algorithm and will ideslly approximate the speed of modeling with just the relevant
columns. This section presents the results of an empirical study that tests the validity of the
CRPS algorithm with the use of both a decision tree and a logistic regression algorithm. The
CRPS agorithm isincorporated into the on-line service at www.predictionworks.com/analyze/.

Tests were performed against synthetic and well-known datasets. The tests on well-known
datasets were performed to determine the applicability of CRPS to real chalenges. Testing was
also performed on a synthetic dataset to better understand the algorithm’s behavior as the
number of irrelevant columns increased. In summary, the tests validate the contribution of the
CRPS agorithm against plain progressive sampling and also against simple modeling on larger
datasets.

3.1 Results on Benchmark Datasets

The CRPS agorithm was tested against severa well-known datasets to validate that the
algorithm is fast and accurate. Most datasets were obtained from the UCI repository [11]. The
selection criteria were for datasets also used in [8] or in [14], and with more than 3,000 rows
and 15 dimensions. In [10], Langley notes that most UCI datasets do not have many irrelevant
columns because experts often created them with a specific purpose in mind. Datasets in data
mining are often ‘wide’ because they serve multiple purposes. The KDD98 Cup dataset was
also included to present a more realist data mining task.

Table 3: Summary of datasets. The last column is an approximation of the number of
relevant columns.

Dataset Rows:n Colsm Rel.Cals;j
chess 3,196 36 19
waveform 5,000 40 20
mushroom 8,129 22 7

|etter 20,000 16 15
KDDCup98 95,431 481 51

CRPS performance is compared against both “Progressive Sampling”, as defined in [14],
and to the simple modeling of “All” of the data. Where possible results for both decision tree
(DT) and logistic regression (LR) are presented.

Table 4 shows that CRPS performed faster than Progressive Sampling on all datasets
(greater than 1.0 ratio). Except for the Chess dataset and decision tree (DT) agorithm, CRPS
was also generally faster than modeling “All” of the data. The speed-up was most noticeable
for the KDD98 dataset, with a 4x and 8x multiplier in speed. CRPS aso improves logistic
regression’s performance better than decision tre€'s because logistic regression “binarizes’
nominal columns. This process multiplies the number of columns, many of which then become
irrelevant.

Table 4 - Total train time comparisons.

CRPS Ratio to Ratio to

Alg Dataset time (sec.) All Data Prog. Samp.
DT Chess 3.0 0.64 1.38

DT Mshrm 4.1 1.27 174

DT Wave 7.3 1.26 214

DT Letter 9.3 1.00 NA

DT L etter 15.6 NA 1.84

DT KDD98 927.0 3.98 7.39

LR Chess 959.6 112 2.16

LR Mshrm 2151.9 4.38 8.56

A 10-fold cross vaidation study was performed to determine the impact of CRPS on
accuracy. Table 5 demonstrates that CRPS appears to have negligible effect on accuracy.
Ideally the CRPS algorithm’s removal of irrelevant columns would have improved accuracy as
observed in other feature selection mechanisms. One possible interpretation of this effect is that
irrelevant columns that tend to be included in the final model also tend to be included in models
on smaller data samples.

Table 5 - Accuracy comparisonsin percent. (ratio to CRPS results)

Alg Dataset CRPS All Data Ratio

DT chess 94.45 94.14 1.00
DT wave 67.08 67.04 1.00
DT mushr. 98.56 98.56 1.00
DT letter 56.06 56.05 1.00
DT kdd9s 95.06 95.33 1.00
LR chess 90.08 90.08 1.00
LR mushr. 78.40 78.40 1.00

The final empirica test on benchmark datasets was an analysis of model simplicity. Table 6
below demonstrates that the models create by CRPS generally refer to fewer columns than a
model built on al of the data. Fewer columns in the outcome model simplifies discussion about
the factors that predict future behavior.

Table 6 - Number of relevant columnsin final model

Alg. Dataset CRPS All Data Ratio
DT chess 19 20 0.95
DT mushr. 7 8 0.88
DT letter 14 16 0.88
DT wave. 14 25 0.56
DT kddos 49 52 0.94
LR chess 5 5 1.00

LR mushr. 4 4 1.00

3.2 Synthetic Datasets with Irrelevant Columns

Tests on synthetic datasets were performed to better understand the relationship between the
proportion of irrelevant columns and CRPS performance. To control for this proportion a
dataset with only relevant columns was updated by adding an increasing number of random
columns. The foundational dataset with only relevant columns was composed of the nine (9)
columns in the mushroom dataset that were considered relevant by the decision tree algorithm.
Columns of random values of alternating nominal, ordinal, and continuous data types were then
added. Figure 5 shows a growing improvement in time performance by CRPS as the number of
irrelevant columns increase. Accuracy remains unaffected.

2.0

15 —>— Accuracy Ratio
' —A— Time Ratio

10{ % ——x

0.5 4

00 T T T T T T

0 25 40 60 100 200 400
Irrelevant Columns

Figure 5 - The relative accuracy and time expended, between CRPS and moddling the entire
dataset, as more irrelevant columns are added.

As mentioned in the discussion of the column reduction schedule the synthetic datasets tests
illustrate further opportunity for column reduction. The first function to be tested was based on
the inverse of the number of samples already considered 1/i. This function resulted in no
improvement in performance as more irrdlevant columns were added. The reason for the
plateau is due to aways processing 1/k columns in the last sample. Because the synthetic
dataset’s 8,000 rows are covered after k=5 samples, the removal function would always process
at least 1/5 of al of the columns. The removal function was modified to ensure that by the time
that the last sample was considered only the columns found to be relevant in the second-to-last
sample (k-1) would be considered. As Figure 5 illustrates this update allowed for continual
improvement as more irrelevant columns were added without a negative impact on accuracy.

4 Related Work

CRPS is closely related to past work on feature selection and sampling. Even without access
to automated approaches a data miner will commonly first work with smaller samples to
understand the properties of the task and reduce the number of columns based on past
experience before proceeding with the entire dataset. The automation of these two techniques
for scaling induction algorithms is formally treated by Provost and Kolluri in [13]. Under the
work’s section on "data partitioning” the two methods are covered under "sdect feature
subsets' and "process sequential subsets'.

The two well-known feature selection approaches in the literature are filters [9] and
wrappers [8]. The filter approach is unsupervised and uses techniques such as factor analysis
and principal components analysis to identify redundant columns or to compress columns into a
smaller set of dimensions. The wrapper approach is supervised and is used to isolate an optimal
feature subset by considering how the modeling algorithm and the training set interact. Because
of the large number of possible column combinations (2™), both approaches use heuristics to
contain the search space, usually to polynomial time ().

Empirical testing has validated the increased accuracy and decreased model complexity
associated with feature sdlection [2,4,8,9,10,12]. As Provost et al observe in [13], however, far
less research into feature selection has focused on scaling. The use of feature selection as a
scale-up technique offers significant opportunity since most state-of-the-art algorithms have
worse than linear performance on the number of features. Mode-building algorithms often
achieve a computational complexity of O(nnm?) [13]. The association between the number of
features and performance is commonly referred to as the ‘curse of dimensiondity' [3] due to the
fact that the search space grows exponentially with each added column.

Another feature selection approach closely related to CRPS is the use of the columns used in
a decision tree to improve the accuracy of a nearest-neighbor algorithm proposed by Cardie in
[4]. Kohavi and John note in [8] however that this approach of feature filtering likely improves
performance due to the remova of irrelevant columns but will likely discard some relevant
features due to fragmentation, and also keep some redundant features. Because CRPS is not
acting as a feature filter for a different algorithm there is less concern of discarding relevant
features. The presence of some redundant features remains but the improved scale-up offered
by CRPS is a worthy compromise.

While feature selection addresses the impact on performance of smaller feature subsets,
sampling investigates the impact from smaller case subsets. As more cases are analyzed,
accuracy tends to increase but then slowly plateaus. Friedman also makes the case in [6] that a
slow and powerful agorithm working on samples may provide superior accuracy over a fast
and naive approach on the entire dataset. In [14] the use of a geometric schedule was proposed
to locate the minimal number of cases required to attain the task's accuracy plateau based on its
learning curve. If fewer rows are needed to resch the plateau then a substantia time
improvement is achieved. The research concludes that "in a wide variety of redlistic
circumstances, progressive sampling is preferable to analyzing al instances from a database”.
The CRPS algorithm strengthens the case for progressive sampling.

5 Conclusions

This work presented the integration of feature selection and sampling to scale up model-
based induction agorithms such as decision tree and logistic regression. The proposed CRPS
algorithm reduces the underlying modeling algorithm's time complexity so that it is based on
the number of columns in the final model instead of the full set of columns in the dataset. The
work demonstrates that all future progressive sampling schedules should now consider passing
column relevance information from sample to sample. Empirical results demonstrate that CRPS
reduces time complexity, memory usage, and model complexity, without affecting accuracy.
Even when being compared to the simple modeling of the entire dataset, CRPS is shown to be
effective when datasets contain even a small proportion of nonrelevant columns. On large
datasets, such as the KDD98 dataset, CRPS is shown to be an order of magnitude faster than
progressive sampling and four times faster than simple modeling. The algorithm aso produces
avaluable ranking of each column's relevance.

Several future research challenges are apparent. The CRPS algorithm should be extensible
to other popular model-building algorithms such as Naive Bayes [5] but this has yet to be
proven. The CRPS column removal function may also be improved by noting the amount of
chance in feature subset membership from sample to sample. Finally, the application of
information passing from sample to sample shows promise as a general scale-up technique.
Once the subset membership has stabilized, for example, other more robust feature selection
methods, such as wrappers, may be attempted. The remova of uninformative rows during
progressive sampling is another topic that should be investigated.

7 References

[1] Agresti, A. (1990), Categorical Data Analysis. New Y ork: John Wiley.

[2] Aha, D. (1998), Feature weighting for lazy learning algorithms. In: H. Liu and H. Motoda
(Eds.) Feature Extraction, Construction and Selection: A Data Mining Perspective.
Norwell MA: Kluwer.

[3] Belman, R. E. (1961), Adaptive Control Processes. Princeton University Press, Princeton,
NJ.

[4] Cardie, C. (1993), Using decision trees to improve case-based learning, in Proceedings of
the Tenth International Conference on Machine Learning, Morgani Kaufmann Publishers,
Inc., pp. 25-32.

[5] Domingos, P. & Pazzani, M. (1996), Beyond independence: Conditions for the optimality
of smple Bayesian classifier. In Machine Learning: Proceedings of the Thirteenth
International Conference on Machine Learning. Morgan Kauf mann.

[6] Friedman, J. H. (1997), Data mining and statisticss What 's the connection? In
Proceedings of the 29th Symposium on the Interface Between Computer Science and
Statigtics.

[7] John, G., & Langley, P. (1996), Satic versus dynamic sampling for data mining. Proc.
Second Intrl. Conf. on Knowledge Discovery and Data Mining pp. 367-370. Portland, OR:
AAAI Press.

[8] Kohavi, R. and John, G. (1997), Wrappers for feature subset selection. Artificial
Intelligence, 97(1-2):273-324.

[9] Kononenko, |. (1994) Estimation attributes. Analysis and extensions of Relief. In
Bergadano, F. and Raedt, L. D., editors, Proceedings of the European Conference on
Machine Learning.

[10] Langley, P. (1994), Selection of relevant features in machine learning, in AAAI Fal
Symposium on Relevance, pp. 140--144.

[11] Murphy, P. M., and Aha, D.W. (1999), UCI Repository of Machine Learning Databases,
Department of Information and Computer Science, University of California, Irvine, CA,
1999.

[12] Oates, T., and Jensen, D. (1998), Large datasets lead to overly complex models: an
explanation and a solution. In Proceedings of the Fourth International Conference on
Knowledge Discovery and Data Mining (KDD-98), pp. 294-298, R. Agrawa and PI
Stolorz, Eds., Menlo Park, CA: AAAI Press.

[23] Provost, F., and Koalluri, V. (1999), A survey of methods for scaling up inductive
algorithms. Data Mining and Knowledge Discovery 2

[14] Provost, F., Jensen, D., and Oates, T. (1999), Efficient Progressive Sampling. In
Proceedings of the Ffth International Conference on Knowledge Discovery and Data
Mining (KDD-99), pp. 23-32, San Diego, CA. ACM Press.

[15] Quinlan, J. R. (1993). C4.5: Programs for Machine Leanring. San Mateo, CA: Morgan
Kaufmann.

