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Abstract 

Sampling and column (variable) selection are commonly used to gain insights that improve 
data mining performance on very large databases. This paper proposes an algorithm named 
CRPS (for Column Removal during Progressive Sampling) that integrates sampling and 
column reduction. This algorithm delivers a predictive model in less time than current 
approaches in tasks where not all columns are relevant. CRPS works in conjunction with 
predictive modeling algorithms that decide which columns to include in their models such as 
decision tree and logistic regression. The CRPS algorithm iteratively models on progressively 
larger samples and also removes some of the columns that were not used in the previous sample 
in order to reduce the amount of overall work. Other advantages of CRPS include the 
requirement of less memory to process the dataset, a ranking of relevance for each column, and 
the generation of simpler models based on fewer columns. The algorithm's time complexity is 
dependent on the number of columns in the final model and not the number of columns in the 
dataset. In the worst case when all columns are required by the model, CRPS does not increase 
the time complexity of progressive sampling, but could double the time of directly modeling all 
of the data. In more practical cases where some of columns are not relevant to the task, CRPS 
offers an advantage over traditional predictive modeling. Empirical results validate CRPS’s 
efficiency with no degradation in accuracy. 

1   Introduction 

Predictive data mining algorithms are required to efficiently produce accurate and simple 
models for datasets with large numbers of rows (instances) and columns (features). Research 
into efficiency has focused on building faster algorithms, but some work has also gone into 
reducing the number of rows and columns to be evaluated. While there has been progress to 
efficiently reduce the number of rows from the search, such as through “progressive sampling”  
in [14], less progress has been made to efficiently reduce the number of columns. Much of the 
research in column reduction focuses on accuracy and model simplification at the expense of 
time. Given m columns, the successful “wrapper”  approach for example adds a factor of m2 to 
the underlying algorithm [8]. Reducing the number of columns, however, has a greater impact 
on computational complexity than reducing rows. The “curse of dimensionality”  implies that 
most state-of-the-art induction algorithms have greater than linear time complexity on the 
number of columns while only linear time complexity on the number of rows.  

 
In this paper we propose an efficient column reduction algorithm named CRPS that adds no 

computational factor to the overall processing time. The algorithm in fact changes the 
computational complexity of an underlying inductive algorithm from O(n,m), where n is the 
number or rows and m is the number of columns, to O(n,j) where j is the number of relevant 
columns to the underlying algorithm. As datasets become wider, such as the datasets presented 
during the KDD conference competition, greater attention will be paid to algorithms whose 
time complexity is measured not by the total number of columns in the dataset, but by the much 
smaller number of relevant columns. 



 
The essence of CRPS is to use some of the column relevance information available from 

modeling smaller samples to eliminate irrelevant columns for larger samples of the dataset. 
Specifically, the proposed algorithm builds models on increasingly larger data samples while 
constraining the number of columns considered until no more reduction occurs. The name 
CRPS is derived from the phrase Column Reduction during Progressive Sampling. To 
efficiently detect which columns appear to be relevant in any one sample, the CRPS algorithm 
works by using state-of-the-art predictive modeling algorithms that explicitly decide which 
columns to include in their model. Two such algorithms are decision tree and logistic 
regression. In a sense, CRPS uses the underlying algorithm’s ability to avoid overfitting to 
determine which columns are not relevant to the task at hand. 

 
There are other valuable consequences from the use of CRPS. One useful output is the 

ranking of each column's relevance from sample to sample. This information allows an analyst 
to focus their attention on fewer columns. Fewer columns also mean that the final process 
against all the rows in the dataset will require less memory. This would allow larger datasets to 
be processed in memory. Fewer columns may also be referenced by CRPS generated models 
due to the removal of irrelevant columns during earlier samples. This exclusion of irrelevant 
columns may also increase accuracy. However, if relevant columns are accidentally removed 
then the final model may turn out to be less accurate. Empirical testing shows that CRPS 
requires considerably less time to deliver its model, produces somewhat simpler models, and 
does not impact accuracy. 

 
The subsequent sections of the paper describe the CRPS algorithm in detail and analyze the 

algorithm’s time complexity.  Empirical results are then presented. The paper concludes with a 
summary of related research and a list of open research questions. 

2   The CRPS Algorithm 

In this section we present the details of the CRPS algorithm, which performs column 
reduction during progressive sampling. The algorithm is used in tandem with model-based 
predictive modeling algorithms that explicitly chose which columns to include in their output. 
After each sample is trained the information about which columns were used in the model 
progress to be included in the modeling of a larger sample. Randomly selected portions of the 
remaining columns are also included. As sampling proceeds, the number of randomly chosen 
columns is slowly decreased. As the sample size increases the number of columns used will 
begin to converge with the number of relevant columns required to produce the model. Table 1 
presents the steps followed by CRPS. 

Table 1 - Overview of CRPS algorithm 

Start with all columns in subset ci 
For each sample ni in sampling schedule N 

 Construct model on rows ni and columns ci 
 φ() = relevant columns from model  
 δ() = a subset of unused columns 
 New column subset ci = φ() ∪ δ() 

Return last constructed model 
 
The next sections describe CRPS’ sampling schedule N, its column relevancy function φ(), 

and its column removal schedule C that is created by the unused column selector δ(). A more 
detailed algorithm is presented afterwards along with a computational complexity analysis. 



2.1   Sampling Schedule - N 
Several sampling schedules N = { n0,n1,n 2,…, nk}  are possible for given a dataset N with n 

rows. The value k will refer to the final sample to be tested. To achieve the goals of efficient 
information passing the schedule must continually increase until nk=n. Of the approaches that 
were tested the geometric schedule proposed in [[14]] was finally selected. This choice became 
apparent after tests on simpler approaches such as the use of only one sample (k=1). The use of 
a single small sample to determine column relevancy always resulted in significant reduction in 
processing time was, but the final model’s accuracy suffered. The less aggressive approach of 
using a single large sample to determined relevancy, say one-half of the rows, proved to be 
effective in terms of accuracy, but offered little computational advantage. The lack of 
advantage in speed-up is due to the fact that the modeling the large sample will consume half of 
the time required to build the entire dataset. Although using one single sample is not an 
effective approach to column reduction, the insight that some column relevance can be detected 
from samples motivated further research. 

 
The fact that the use of one small sample occasionally achieved good results inspired the 

creation of a progressive sampling schedule that reduced the number of columns tested after 
each sample. To achieve significant gains in computational time the sample sizes were 
increased faster than the linear (arithmetic) rate proposed in [JOHN96]. The specific schedule 
used was n0=250 and a doubling afterwards, or N = { n0=250×20, n1=250×21, n 2=250×22,…, n 

k} . This allowed for more work to be done on smaller samples that were computationally 
inexpensive. By the time that the larger samples were tested a significant number of irrelevant 
columns would be eliminated. Another advantage to this schedule is that it offers a natural fit 
with the schedule proposed in [[14]]. The progressive sampling approach has been shown to be 
effective in the discovery of the minimum number of rows required to attain a plateau in 
accuracy. According to their research a starting number of n0=250 is acceptable. 

 
Although the proposed schedule can be produced before data processing, there are 

opportunities to skip past some samples. For example, in the case where no progress in column 
reduction will occur from a specific sample onward, testing can skip directly to the final 
sample. As demonstrated in the empirical tests, this opportunity occurred with the ‘ letter’  
dataset which has only relevant columns. 

2.2   Column Relevancy Function - φ() 
To achieve its scale-up objective the CRPS algorithm requires an inexpensive method to 

detect column relevance information after each sample has been modeled. The column 
relevancy function used in CRPS is simply to review which columns where used in the model 
and which were not. The intuition behind this approach is that state-of-the-art induction 
algorithms have evolved significant abilities to avoid overfitting within their stopping criterions 
and pruning techniques. This approach has also been successfully used by [4] to pass column 
relevance information from a decision tree to a nearest-neighbor algorithm. 

 
CRPS should be applicable to any induction algorithms that explicitly choose their columns. 

Examples include decision tree algorithms such as C4.5 [15], forward-selection logistic 
regression [1], and the naïve-bayes classifier [5]. Even algorithms that do not create a model 
such as instance-based approaches commonly perform a column relevancy step in advance [2]. 
One possible exception to this rule includes neural networks, which commonly operate as a 
black box. 

 
Once a model is built for a sample the column relevancy function simply traverses the 

model to extract the set of relevant columns for that sample. The column relevance function 



will be labeled as φ(Mi), where Mi is the model constructed on the ith sample. For the logistic 
regression algorithm, traversal detects which columns were used as one of the coefficients of 
the equation. If, for example, the equation contains five coefficients then the column relevance 
function would return the five (5) columns associated to each coefficient. For decision tree 
algorithm, the relevancy function returns the set column used within the internal nodes of the 
tree as proposed in [4]. 

2.3   Column Removal Schedule - C 

Given a sampling schedule N and a column relevancy function φ() the remaining question 
for iterative column reduction is the rate at which columns should be removed from sample to 
sample. CRPS column reduction schedule C = {c0,c1,c2,…, c k}  is dynamically created as each 
sample is analyzed. Each ci represents the columns that, along with rows in sample ni, are 
analyzed by the underlying algorithm A(). To reduce the amount of effort expended on larger 
samples the proposed schedule reduces columns most quickly during the early stages of the 
sampling. By the time that the larger samples are modeled most of the irrelevant columns 
would have been identified and discarded. Another consideration for the removal schedule is 
that as the sample size ni approaches the size of the entire dataset nk then most, if not all, of the 
relevant columns should have been detected. Therefore, the last modeling step should not 
consider any random columns whatsoever and it should base column relevance solely on the 
second-to-last nk-1 modeling step. 

 
Each column subset, ci, in the column removal schedule C is based on relevant columns 

from the past sample φ(M i-1) and a subset from the remaining columns δ (). The subset of 
remaining columns is based on the sample number i and how close the process is to the final 
sample ni : 

ci = φ(M i-1) + δ (ni,i) 
 
From sample to sample random column selector δ(ni,i) returns fewer columns with the use 

of the following function: 
δ(ni,i) = i-1 × (|n|-|ni|)/|n|. 

 
Assume a dataset with 36 columns and 8,000 rows, and also a first sample size of two 

hundred fifty (|n0|=250) rows. All columns are used to build a model on sample s0. Assume that 
eight (8) columns were used in the model on sample n0. When the next model is built on a 
sample with five hundred rows (|n1|=500) only twenty-one (21) columns are used. The twenty-
one columns include the eight columns deemed relevant in the s0 model, and an additional 
thirteen (δ (n1,1)=13) columns that are randomly selected. The number thirteen is determined 
with the following calculation ((36-8) × 1/2 × (8000-500)/8000 = 8 + (28 × 1/2 × 15/16). If the 
number of relevant columns from sample to sample stays at 8 columns then the final schedule 
would be: C = { c0=36, c1=21, c 2=15, c 3=13, c 4=10, c k=8}  

2.4   Algorithm Analysis 
The effect on time complexity from the combination of the three components above is 

dependent on the number of rows n and columns m. The complexity is also dependent on the 
number of relevant columns discovered at each sample, ji. Table 2 presents a more detailed 
description of the algorithm under analysis. 



 
Table 2:  The CRPS algorithm. 

Inputs: S is a set of examples 
 A(ni, ci) an induction algorithm that accepts a set of rows ni and a set of columns ci 

Outputs: M - a predictive model 
 R - a list of ranked columns 
 
Procedure CRPS (S, A) 
 n = row count in S 
 i = 0  // set sample counter 
 ni = 250  // starting sample size 
 ci = S.cols     // working set of columns 

 WHILE ni ≤ n  // while more rows to process 
Mi  = model induced by A(ni, ci) 
δ (ni,i) = i-1 × (|n|-|ni|)/|n| 
c i = φ (Mi-1) ∪ (S.cols − φ (Mi-1)) ×δ (ni,i)) 
i = i + 1 // increment sample counter 
ni = ni × 2    // double the sample size 

 END WHILE 

 
The worst-case time complexity for CRPS occurs when all, or almost all, of the columns are 

labeled as relevant at each sample. When this is the case CRPS will create a model based on all 
of the rows and columns at its last step, but will also have trained models on several 
intermediary samples. Assume that the computational complexity of the underlying modeling 
algorithm O(f(m,n)) has linear complexity on the number of rows n. At the last sample, the time 
required is f(m,n). Because of the geometric sampling schedule the second-to-last sample 
processes only half of the rows, nk-1= nk/2, but all of the columns because they are all relevant. 
The time required at this step is f(m,n/2). As we work backwards through the samples the 
computational sequence becomes f(m,n) + f(m,n/2) + f(m,n/4) + … + f(m,n0). The sequence can 
be rewritten as f(m,n) × (1 + ½ + ¼ …) which at the limit becomes f(m,n) × 2. In the worst case, 
CRPS requires twice as much time as modeling the entire dataset. This complexity is identical 
to that of progressive sampling. 

 
Although many datasets show worst-case characteristics, the intention is to apply CRPS to 

datasets with a substantial proportion of irrelevant attributes. The average-case complexity 
requires several assumptions to facilitate its calculation. The first assumption is that the 
underlying induction algorithm has linear complexity on both n and on m, O(f(n,m)) = nm. In 
general a state-of-the-art algorithm will have greater than linear complexity on the number of 
columns. Therefore this is a pessimistic assumption because CRPS will not recognize the 
benefit that it will likely recognize in practice from having reduced the number of columns. 
Halving the number of columns on the last and most time consuming step, for example, will 
usually save more than half of the processing time. The next assumption is that the number of 
relevant columns at each sample δ(Mi) remains at constant value j (j<m). Because of the linear 
assumption on f(m,n) the processing can be divided into two components: the processing on the 
j relevant columns, and the processing on the randomly selected columns in schedule C.  

 
At the limit the work on relevant columns approaches 2nj as it did for the worst-case on all 

column. The work that occurs above the darker line in Figure 1 is the work performed on non-



relevant columns. The work performed follows the sequence: 250×(m-j)/1 + 250×2×(m-j)/2  + 
… + 0 which reduces to (m-j) ×  n0 log2(n/n0). Because this function is contained by jn, the 
average case complexity of CRPS, given the assumptions stated earlier, is jn. 

 
The best case occurs when no columns are labeled relevant ji=0. The sum of the area still 

holds f(n,m,j) = jn + (m-j)log(n). With j=0 however the function reduces to mlog(n). The best 
case complexity is O(f())=mlog(n).  

2.5  Example 
This section illustrates the application of the CRPS algorithm to one of the datasets from the 

empirical tests: mushroom. The presentation will facilitate the discussions on empirical results 
and comparisons. The mushroom dataset is a two-class problem (edible/nonedible) with 8,196 
rows and 22 columns of low-order nominal datatype. This is a small dataset, however, it is still 
a good candidate for CRPS because less than one-half of the 22 columns are used by the model 
when trained on the entire dataset. The underlying induction algorithm used in this example 
was Logistic Regression. 

 
On the first iteration a model is built on 250 random rows and all of the columns. Assume 

that 9 columns were used in the model. On the second iteration a model is built on 500 random 
rows, the 9 ‘ relevant’  columns used in the previous model and (36-9)/2 random columns. The 
process iterates until all of the rows are modeled.  
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Figure 1 - The time required by Logistic Regression to process the mushroom 

dataset at different sample points. The “All Data”  data is for non-progressive training 
of models for that given sample size. 

 
The savings in time between CRPS and progressive sample are apparent in Figure 2 and 

Figure 3. As the sample size increases the savings in time between  
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Figure 3 - The time required by Logistic Regression to process the mushroom dataset at 
different sample points. This figure is identical to Figure 2 except with the y-axis is in 
logarithmic scale. 

 
CRPS and progressive sampling increase. Interestingly there also appears to be a substantial 

time savings between CRPS and modeling all of the data just once. The improvement appears 
to grow as the sample size increases. The effect of CRPS on model accuracy is illustrated in 
Figure 4. The effect on this dataset is negligible relative to modeling all of the data 
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Figure 4 - The accuracy achieved by Logistic Regression on the mushroom dataset at 

different sample points.  
 
Given the improvement in time relative to both progressive sampling and simple modeling, 

with no degradation in accuracy, the CRPS approach would be selected for this specific dataset. 

3   Empirical Results 
The use of column removal during progressive sampling is meant to scale-up the underlying 

induction algorithm and will ideally approximate the speed of modeling with just the relevant 
columns. This section presents the results of an empirical study that tests the validity of the 
CRPS algorithm with the use of both a decision tree and a logistic regression algorithm. The 
CRPS algorithm is incorporated into the on-line service at www.predictionworks.com/analyze/. 

 



Tests were performed against synthetic and well-known datasets. The tests on well-known 
datasets were performed to determine the applicability of CRPS to real challenges. Testing was 
also performed on a synthetic dataset to better understand the algorithm’s behavior as the 
number of irrelevant columns increased. In summary, the tests validate the contribution of the 
CRPS algorithm against plain progressive sampling and also against simple modeling on larger 
datasets. 

3.1   Results on Benchmark Datasets 
The CRPS algorithm was tested against several well-known datasets to validate that the 

algorithm is fast and accurate. Most datasets were obtained from the UCI repository [11]. The 
selection criteria were for datasets also used in [8] or in [14], and with more than 3,000 rows 
and 15 dimensions. In [10], Langley notes that most UCI datasets do not have many irrelevant 
columns because experts often created them with a specific purpose in mind. Datasets in data 
mining are often ‘wide’ because they serve multiple purposes. The KDD98 Cup dataset was 
also included to present a more realist data mining task. 

Table 3:  Summary of datasets. The last column is an approximation of the number of 
relevant columns. 

   

Dataset Rows:n Cols:m Rel.Cols:j
chess 3,196 36 19
waveform 5,000 40 20
mushroom 8,129 22 7
letter 20,000 16 15
KDDCup98 95,431 481 51

 
CRPS performance is compared against both “Progressive Sampling” , as defined in [14], 

and to the simple modeling of “All”  of the data. Where possible results for both decision tree 
(DT) and logistic regression (LR) are presented. 

 
Table 4 shows that CRPS performed faster than Progressive Sampling on all datasets 

(greater than 1.0 ratio). Except for the Chess dataset and decision tree (DT) algorithm, CRPS 
was also generally faster than modeling “All”  of the data. The speed-up was most noticeable 
for the KDD98 dataset, with a 4× and 8× multiplier in speed. CRPS also improves logistic 
regression’s performance better than decision tree’s because logistic regression “binarizes”  
nominal columns. This process multiplies the number of columns, many of which then become 
irrelevant. 

Table 4 - Total train time comparisons. 
    

CRPS Ratio to Ratio to

Alg Dataset time (sec.) All Data Prog. Samp.
DT Chess      3.0 0.64 1.38
DT Mshrm 4.1 1.27 1.74
DT Wave 7.3 1.26 2.14
DT Letter       9.3 1.00 NA
DT Letter       15.6 NA 1.84
DT KDD98    927.0 3.98 7.39
LR Chess      959.6 1.12 2.16
LR Mshrm 2151.9 4.38 8.56



 
A 10-fold cross validation study was performed to determine the impact of CRPS on 

accuracy. Table 5 demonstrates that CRPS appears to have negligible effect on accuracy. 
Ideally the CRPS algorithm’s removal of irrelevant columns would have improved accuracy as 
observed in other feature selection mechanisms. One possible interpretation of this effect is that 
irrelevant columns that tend to be included in the final model also tend to be included in models 
on smaller data samples. 

Table 5 - Accuracy comparisons in percent. (ratio to CRPS results) 
     

Alg Dataset CRPS All Data Ratio
DT chess      94.45 94.14 1.00
DT wave. 67.08 67.04 1.00
DT mushr. 98.56 98.56 1.00
DT letter 56.06 56.05 1.00
DT kdd98 95.06 95.33 1.00
LR chess      90.08 90.08 1.00
LR mushr. 78.40 78.40 1.00

 
The final empirical test on benchmark datasets was an analysis of model simplicity. Table 6 

below demonstrates that the models create by CRPS generally refer to fewer columns than a 
model built on all of the data. Fewer columns in the outcome model simplifies discussion about 
the factors that predict future behavior.  

Table 6 - Number of relevant columns in final model 
Alg. Dataset CRPS All Data Ratio
DT chess 19 20 0.95
DT mushr. 7 8 0.88
DT letter 14 16 0.88
DT wave. 14 25 0.56
DT kdd98 49 52 0.94
LR chess 5 5 1.00
LR mushr. 4 4 1.00

 



3.2 Synthetic Datasets with Irrelevant Columns 
Tests on synthetic datasets were performed to better understand the relationship between the 

proportion of irrelevant columns and CRPS performance. To control for this proportion a 
dataset with only relevant columns was updated by adding an increasing number of random 
columns. The foundational dataset with only relevant columns was composed of the nine (9) 
columns in the mushroom dataset that were considered relevant by the decision tree algorithm. 
Columns of random values of alternating nominal, ordinal, and continuous data types were then 
added. Figure 5 shows a growing improvement in time performance by CRPS as the number of 
irrelevant columns increase. Accuracy remains unaffected.  
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Figure 5 - The relative accuracy and time expended, between CRPS and modeling the entire 

dataset, as more irrelevant columns are added. 
 
As mentioned in the discussion of the column reduction schedule the synthetic datasets tests 

illustrate further opportunity for column reduction. The first function to be tested was based on 
the inverse of the number of samples already considered 1/i. This function resulted in no 
improvement in performance as more irrelevant columns were added. The reason for the 
plateau is due to always processing 1/k columns in the last sample. Because the synthetic 
dataset’s 8,000 rows are covered after k=5 samples, the removal function would always process 
at least 1/5 of all of the columns. The removal function was modified to ensure that by the time 
that the last sample was considered only the columns found to be relevant in the second-to-last 
sample (k-1) would be considered. As Figure 5 illustrates this update allowed for continual 
improvement as more irrelevant columns were added without a negative impact on accuracy. 

4   Related Work 

CRPS is closely related to past work on feature selection and sampling. Even without access 
to automated approaches a data miner will commonly first work with smaller samples to 
understand the properties of the task and reduce the number of columns based on past 
experience before proceeding with the entire dataset. The automation of these two techniques 
for scaling induction algorithms is formally treated by Provost and Kolluri in [13]. Under the 
work’s section on "data partitioning" the two methods are covered under "select feature 
subsets" and "process sequential subsets".  

 
The two well-known feature selection approaches in the literature are filters [9] and 

wrappers [8]. The filter approach is unsupervised and uses techniques such as factor analysis 
and principal components analysis to identify redundant columns or to compress columns into a 
smaller set of dimensions. The wrapper approach is supervised and is used to isolate an optimal 
feature subset by considering how the modeling algorithm and the training set interact. Because 
of the large number of possible column combinations (2m), both approaches use heuristics to 
contain the search space, usually to polynomial time (m2).  



Empirical testing has validated the increased accuracy and decreased model complexity 
associated with feature selection [2,4,8,9,10,12]. As Provost et al observe in [13], however, far 
less research into feature selection has focused on scaling. The use of feature selection as a 
scale-up technique offers significant opportunity since most state-of-the-art algorithms have 
worse than linear performance on the number of features. Model-building algorithms often 
achieve a computational complexity of O(nm2) [13]. The association between the number of 
features and performance is commonly referred to as the ‘curse of dimensionality' [3] due to the 
fact that the search space grows exponentially with each added column. 

 
Another feature selection approach closely related to CRPS is the use of the columns used in 

a decision tree to improve the accuracy of a nearest-neighbor algorithm proposed by Cardie in 
[4]. Kohavi and John note in [8] however that this approach of feature filtering likely improves 
performance due to the removal of irrelevant columns but will likely discard some relevant 
features due to fragmentation, and also keep some redundant features. Because CRPS is not 
acting as a feature filter for a different algorithm there is less concern of discarding relevant 
features. The presence of some redundant features remains but the improved scale-up offered 
by CRPS is a worthy compromise. 

 
While feature selection addresses the impact on performance of smaller feature subsets, 

sampling investigates the impact from smaller case subsets. As more cases are analyzed, 
accuracy tends to increase but then slowly plateaus. Friedman also makes the case in [6] that a 
slow and powerful algorithm working on samples may provide superior accuracy over a fast 
and naive approach on the entire dataset. In [14] the use of a geometric schedule was proposed 
to locate the minimal number of cases required to attain the task's accuracy plateau based on its 
learning curve. If fewer rows are needed to reach the plateau then a substantial time 
improvement is achieved. The research concludes that "in a wide variety of realistic 
circumstances, progressive sampling is preferable to analyzing all instances from a database". 
The CRPS algorithm strengthens the case for progressive sampling. 

5   Conclusions 
This work presented the integration of feature selection and sampling to scale up model-

based induction algorithms such as decision tree and logistic regression. The proposed CRPS 
algorithm reduces the underlying modeling algorithm's time complexity so that it is based on 
the number of columns in the final model instead of the full set of columns in the dataset. The 
work demonstrates that all future progressive sampling schedules should now consider passing 
column relevance information from sample to sample. Empirical results demonstrate that CRPS 
reduces time complexity, memory usage, and model complexity, without affecting accuracy. 
Even when being compared to the simple modeling of the entire dataset, CRPS is shown to be 
effective when datasets contain even a small proportion of nonrelevant columns. On large 
datasets, such as the KDD98 dataset, CRPS is shown to be an order of magnitude faster than 
progressive sampling and four times faster than simple modeling.  The algorithm also produces 
a valuable ranking of each column's relevance.  

 
Several future research challenges are apparent. The CRPS algorithm should be extensible 

to other popular model-building algorithms such as Naive Bayes [5] but this has yet to be 
proven. The CRPS column removal function may also be improved by noting the amount of 
chance in feature subset membership from sample to sample. Finally, the application of 
information passing from sample to sample shows promise as a general scale-up technique. 
Once the subset membership has stabilized, for example, other more robust feature selection 
methods, such as wrappers, may be attempted. The removal of uninformative rows during 
progressive sampling is another topic that should be investigated. 



7   References 

[1] Agresti, A. (1990), Categorical Data Analysis. New York: John Wiley. 
[2] Aha, D. (1998), Feature weighting for lazy learning algorithms. In: H. Liu and H. Motoda 

(Eds.) Feature Extraction, Construction and Selection: A Data Mining Perspective. 
Norwell MA: Kluwer. 

[3] Bellman, R. E. (1961), Adaptive Control Processes. Princeton University Press, Princeton, 
NJ. 

[4] Cardie, C. (1993), Using decision trees to improve case-based learning, in Proceedings of 
the Tenth International Conference on Machine Learning, Morgani Kaufmann Publishers, 
Inc., pp. 25-32. 

[5] Domingos, P. & Pazzani, M. (1996), Beyond independence: Conditions for the optimality 
of simple Bayesian classifier. In Machine Learning: Proceedings of the Thirteenth 
International Conference on Machine Learning. Morgan Kaufmann. 

[6] Friedman, J. H. (1997), Data mining and statistics: What 's the connection? In 
Proceedings of the 29th Symposium on the Interface Between Computer Science and 
Statistics. 

[7] John, G., & Langley, P. (1996), Static versus dynamic sampling for data mining. Proc. 
Second Intrl. Conf. on Knowledge Discovery and Data Mining pp. 367-370. Portland, OR: 
AAAI Press. 

[8] Kohavi, R. and John, G. (1997), Wrappers for feature subset selection. Artificial 
Intelligence, 97(1-2):273-324. 

[9] Kononenko, I. (1994) Estimation attributes: Analysis and extensions of Relief. In 
Bergadano, F. and Raedt, L. D., editors, Proceedings of the European Conference on 
Machine Learning. 

[10] Langley, P. (1994), Selection of relevant features in machine learning, in AAAI Fall 
Symposium on Relevance, pp. 140--144. 

[11] Murphy, P. M., and Aha, D.W. (1999), UCI Repository of Machine Learning Databases, 
Department of Information and Computer Science, University of California, Irvine, CA, 
1999. 

[12] Oates, T., and Jensen, D. (1998), Large datasets lead to overly complex models: an 
explanation and a solution. In Proceedings of the Fourth International Conference on 
Knowledge Discovery and Data Mining (KDD-98), pp. 294-298, R. Agrawal and Pl 
Stolorz, Eds., Menlo Park, CA: AAAI Press. 

[13] Provost, F., and Kolluri, V. (1999), A survey of methods for scaling up inductive 
algorithms. Data Mining and Knowledge Discovery 2 

[14] Provost, F., Jensen, D., and Oates, T. (1999), Efficient Progressive Sampling. In 
Proceedings of the Fifth International Conference on Knowledge Discovery and Data 
Mining (KDD-99), pp. 23-32, San Diego, CA. ACM Press. 

[15] Quinlan, J. R. (1993). C4.5: Programs for Machine Leanring. San Mateo, CA: Morgan 
Kaufmann. 

 


