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ABSTRACT 

We propose a supervised learning approach, SDOI, to the task of 

identifying concept mentions within a document and of linking 

these mentions to their corresponding concept node, if it exists, in 

a domain-specific ontology. Concept mention identification is 

performed with a trained sequential tagging model. Each 

identified mention is then associated with a set of candidate 

ontology concepts along with their feature vectors. We formalize 

feature spaces proposed in the literature and expand it into new 

data sources, such as from the training corpus itself. An iterative 

algorithm is defined for handling collective features which assume 

that some of the labels are known in advance. The approach is 

validated against the ability to identify the concept mentions 

within the 139 KDD-2009 conference paper abstracts, and to link 

these mentions to a domain-specific ontology for the field of data 

mining. We show a lift in over existing approaches applicable to 

the task. Additional experiments on a separate corpus from the 

same domain suggest that the trained models are portable both in 

terms of accuracy and in their ability to reduce annotation time. 
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H.3.3 [Information Search and Retrieval]: Information Systems 

– Information Storage and Retrieval. 

General Terms 

Algorithms, Experimentation. 
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1. INTRODUCTION 
The value that can be gained from the growing availability in both 

electronic documents and ontologies will increase significantly 

once these two resource types are deeply interlinked. Imagine for 

example the time when the concepts mentioned within a research 

paper are linked to the corresponding concept within an ontology 

from the paper’s research area; or when the concepts mentioned in 

the business rules within a corporation’s policy documents are 

linked to the concepts in their corporate ontology. The documents 

would now behave more like hyperlinked webpages than static 

Adobe PDF or Microsoft Word files, and would thus enable more 

navigational strategic reading, when required. Further, searches 

on domain specific concepts such as “supervised approaches to 

concept mention linking” could also be more effective than the 

current ad hoc approach of ever more finely tuned keyword-based 

searchers. Similarly, the use and development of ontologies will 

benefit from links to a concept’s usage in natural language. By 

seeing how a concept is described, used and constrained in 

linguistic expressions the meaning of a weakly developed concept 

can generally be more quickly understood and improved upon. 

Finally, deep interlinking could enable new forms of information 

retrieval, extraction and analysis.1 

As described, the task addressed in this paper can be naturally 

decomposed into two subtasks: 1) the identification of relevant 

concept mentions in a text; and, 2) the linking of each of these 

mentions to some appropriate concept in an ontology, if such a 

concept exists. An obstacle however to the vision of deeply 

interlinked information is the significant amount of manual effort 

required by both subtasks. Some automation of these tasks is a 

precondition for deep interlinking, and some of the recent 

research described in the next section hints at the large-scale 

feasibility of this automation. 

1.1 Related Work 
The task of annotating text with semantic information, possibly as 

a pre-processing step, has been addressed by several research 

areas ranging from natural language processing, information 

retrieval, and information extraction. In the field of natural 

language processing two related tasks within lexical semantics are 

word sense disambiguation [1] and named entity recognition [5]. 

In word sense disambiguation however, the mentions sought are 

infrequently multi-word expression, and the lexical database is 

assumed to be complete both in alternate spellings and in word 

senses. Our task has the additional challenge of frequent multi-

word mentions and the inventory (the ontology) can be 

incomplete and contain few of the alternate phrasings. In named 

entity recognition the mentions sought are often multi-token 

expressions, but the number of concepts to be linked to is very 

small (e.g. person, protein, organization, and location) and the 

mentions have additional structure (e.g. nouns with frequently 

capitalized first letters). In our task it is common to have no 

dominant conceptual category to link to and for the mentions to 

have less structure. Other related research arises from the 

extraction of technical terms to automatically create a book’s 

subject index [12], and automated population of database and 

ontologies [10]. 

The field of biomedical text mining has actively investigated the 

ability to identify concepts in research papers and to link them to 

domain specific databases, such as the gene and protein database 

Swiss-Prot2 or to Gene Ontology3 [14]. The field’s focus however 

                                                                 

1 This paper’s abstract illustrates the envisioned annotation. Its 

concept mentions are identified and linked to an ontology (in 

this version of the document the hyperlinks lead nowhere, and 

would be reinserted after the double-blind review process). 

2 http://www.ebi.ac.uk/swissprot/ http://expasy.org/sprot/   
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with respect to identification and linking of mentions (as opposed 

to detecting relations between mentions) continues to be on 

named entity mentions such as of proteins, genes, and organisms; 

with solutions generally proposing ways of cope with the 

multitude of spellings and abbreviations of their entities. Less 

attention has been given to the processing of more general 

concept mentions, such as biological or experimental processes. 

Recently, some research has begun to investigate the more general 

task of identifying and linking of concept mentions to those 

concepts that are found in Wikipedia using supervised learning 

[4,8,9]. Further, while Milne & Witten in [9] and Kulkarni & al in 

[4] focus on identifying and linking concept mentions within 

Wikipedia pages, their research also begins to explore the 

application on non-Wikipedia documents such as news articles. 

Both propose a relatively small feature space with a significant 

focus on features that require some of document’s links to be 

accurately pre-predicted in order to inform the linking decisions 

for the remaining mentions based on the document’s context. 

Milne & Witten in [9] propose the use of three features for linking 

mentions to Wikipedia. One feature is simply the proportion of 

inlinks associated with the concept (its commonness). The two 

other features are based on a proposed semantic relatedness 

measure between a candidate concept and the concepts mentioned 

in the document that are naturally disambiguable. As a first phase 

they detect the “context concepts” that are assumed not to require 

disambiguation, and then proceed to a supervised learning phase. 

They also use of the number of links into the candidate concept 

from within Wikipedia (the concept’s commonness) as a feature. 

A challenge of applying their approach to the more general task of 

non-Wikipedia documents is their requirement that some of the 

mentions in the document can be naturally linked to the ontology 

without the need for disambiguation (in order to provide the 

context for the relatedness features). Their two phase approach 

could benefit from a more conservative approach that continually 

increases the mentions that will be deemed as disambiguated, and 

for these context concepts to be decided by the same trained 

classifier.  

Kulkarni & al in [4] extend the link selection work of [9] in two 

main ways. They add additional features based on the similarity 

between the bag-of-words representations of the text-window 

surrounding the concept mention and of the concept’s description 

in the ontology. They also propose a more sophisticated scheme to 

handle the collective features. Specifically they propose the use of 

an objective function that sums up the probability estimate 

produced by the trained classifier (based on bag-of-word features) 

and the relatedness measure proposed in [9] tested on all pairs of 

candidate concepts. They empirically show that optimizing on the 

proposed function closely tracks F1-measure performance (on 

several of their test documents, as the value of their objective 

function increases so did F1 performance). They explore two 

optimization algorithms for finding an optimal link assignment to 

the objective function. One algorithm is based on integer linear 

programming while the other based on greedy hill-climbing. 

Foreseen challenges to the application of their proposed approach 

to our task include its use of the longest matching sequence 

heuristic for concept mention identification which will reject 

many candidate mentions. Also, updating the proposed objective 

                                                                                                           

3 http://www.geneontology.org/GO  

function to include additional features, or new definitions of 

relatedness, could unwittingly degrade algorithm performance. 

Finally, they do not explore the use of features that directly 

compares the mention or document to the concept and its 

description. 

1.2 Our Contribution 
We propose supervised algorithm to the tasks of concept mention 

identification and linking to an ontology: SDOI. 

SDOI first trains a sequential classifier to identify concept 

mentions that need not have been mentioned before in the corpus 

nor be present in the ontology. The use of sequential models has 

been successfully used in the NLP community to the related tasks 

of text chunking and named-entity recognition, thus any 

improvements to these other solutions, such as the handling of 

global features can be naturally imported into our solution. 

Next, SDOI identifies a set of candidate concepts for each 

mention based on heuristic candidacy rules that are more general 

than those currently proposed in order to expand the recall rate. 

For each candidate concept, an expanded set of features is defined 

in order to improve precision. We address the procedural 

challenge of collective features with an iterative classification 

algorithm. This approach simplifies the algorithm’s 

reimplementation, naturally allows for the addition of more 

features, and enables the use of an off-the-shelf supervised binary 

classification algorithm. 

We validate SDOI on a novel corpus and domain specific 

ontology consisting of the 139 abstracts of the papers accepted to 

the KDD-2009 conference, and whose concept mentions have 

been manually identified and linked, where possible, to the 

concepts within a nascent data mining ontology. We further 

validate the portability of the trained model by assessing accuracy 

and time savings on papers from a separate conference: ICDM’09. 

The remainder of the paper is structured as follows: The next 

section formally defines the task. Sections 3 through 6 describe 

the SDOI algorithm, starting with concept mention identification, 

candidate set generation, the feature space and finally the use of 

iterative classification. Section 7 describes the corpus, ontology 

and reports on the empirical evaluation, and Section 8 concludes 

with a discussion of possible research directions. 

2. TASK DEFINITION 

Assume that we are given a corpus of text documents di D where 

each document is composed of sentences based on sequences of 

tokens (orthographic words or punctuation). 

Assume also the existence of an ontology of interrelated concepts, 

oc O, the represent and describe some concept within some 

domain. The concepts are interconnected by directed edges 

referred to as internal links ( ) that link one concept to another 

concept, (oc’, oc’’). Each concept oc can be associated with: a 

preferred name, pc, a set of (also-known-as) synonyms Ac, and 

descriptive text tc. As described, an ontology is a directed and 

labeled multigraph that could be used to represent such diverse 

structures as Wikipedia4 (with its rich text and weak semantics) to 

the Gene Ontology (with its rich semantics and terse descriptions). 

                                                                 

4 http://www.wikipedia.org 

http://www.geneontology.org/GO
http://www.wikipedia.org/


Assume next that each document di has a set of non-overlapping 

non-partitioning subsequences of tokens referred to as concept 

mentions, mm di, that refers to a domain specific meaning not 

generally found in a dictionary. We assume that the domain of the 

corpus overlaps the domain of the domain-specific ontology. 

Every concept mention mm is connected via a directed edge to 

either the concept oc that captures the mention’s intended 

meaning, or to the symbol “?” that denotes the absence of the 

concept within the ontology. We refer to these edges as external 

links and denote them as  (mm, oc). An unlinked concept 

mention,  (mm, ?),is one that cannot be linked to the ontology 

because the concept is not yet deemed to be present in the 

ontology. We can refer to a mention’s token sequence as its 

anchor text, am, to distinguish the text from the concept it links to.  

Figure 1 illustrates the concept mentions within a document. 

Next, Figure 2 illustrates the objects and relations available for 

analysis. Finally, Table 1 contains some additional terminology 

related to the task description. 

Given a document from the same domain as the ontology that 

lacks the concept mention information, the task is to identify each 

of the concept mentions within the document: both their anchor 

text and their corresponding external link. 

[[Collaborative Filtering Algorithm| 

Collaborative filtering]] is the most 

popular [[Algorithm|approach]] to build 

[[Recommender System|recommender systems]] 

and has been successfully employed in many 

[[Computer Application |applications]]. 

However, as [[?|(Schein & al, 2002)]] 

explored, it cannot make recommendations 

for so-called [[?|cold start users]] that 

have rated only a very small number of 

[[Recommendable Item|items]]. 

Figure 1 – The example above uses wiki-style formatting to 

illustrate concept mention identification and linking. The 

doubled square-brackets identify concept mentions, with the 

internal vertical bar (|) separating the anchor text (on right) 

from concept (on left). The question mark character (?) signals 

that the corresponding concept is not present in the ontology. 

Table 1 – Terminology associated with the task 

mi The ith concept mention in the corpus, mi D. 

oi The ith concept node in the ontology, oi O. 

I(oi) The set of internal links into oi from some ok 

O(oi) The set of internal links from oi into some ok. 

E(oi, D) The set of external links into oi from some mk D. 

 

3. IDENTIFYING CONCEPT MENTIONS 
To identify concept mentions in a document we train a sequence 

tagging model in the same spirit as proposed in [13] for the task 

of text chunking, and in [4] for named entity recognition. We use 

BIO tagging, which requires the first token of a mention to be 

labeled with character B, any remaining mention tokens labeled 

with I, and all other tokens are labeled with O. Figure 3 illustrates 

the labels used to identify concept mentions. 

 

Figure 2 – An illustration of the task’s training data. The two 

objects on top represent two text documents. The object below 

represents the ontology of concept nodes and internal links. 

Some non-overlapping subsequences in the documents are 

concept mentions mapped to either concept nodes or the 

unknown concept symbol (?), via external links. 

These approaches generally make use of at least two feature 

sources: the token and its part of speech (POS) role. For the POS 

information the use of an automated part-of-speech tagger (rather 

than manual annotation) is accepted practice. We include features 

also proposed for the named entity recognition task of: whether 

the first letter is capitalized, whether a token contains a number or 

a special character and whether the token contains fewer than four 

characters. We use a five token window and test the unigram, 

bigram and trigrams that include the target token. 

Collaborative/B filtering/I is/O the/O 

most/O popular/O approach/B to/O 

build/O recommender/B systems/I and/O 

has/O been/O successfully/O employed/O 

in/O many/O applications/B ./O 

Figure 3 – Sample of the first sentence in Figure 1 labeled for 

concept mention identification. 

4. CANDIDATE CONCEPT SETS 
A concept mention can be linked to any one of the many concept 

nodes in the ontology. However, knowledge of the mention’s 

anchor text can be used to significantly reduce the number of 

concept nodes that should be realistically considered as candidates 

for the assignment, without discarding the correct node in the 

process. As an example, assume that a concept mention contains 

the anchor text composed of the single token of “features” then its 

candidate concept set might include the concepts for “Predictor 

Feature”, “Application Feature”, and “Data Table Attribute”, one 

of which ideally is the correct concept.  

This section explores a composite heuristic used to create the 

candidate set for a given anchor text; where a candidate set is 

composed of zero or more distinct concepts from the ontology:  

am → Cm = { , oc’, oc”, …}. The heuristic is composed of a series 

of eight individual tests between a concept mention’s anchor text 

and some information about the concept ti(am, oc). Each test 

results in a set of accepted concepts and the overall heuristic 

accepts the union of all accepted concepts. Thus, a concept must 

pass at least one of the tests to become a member of a mention’s 

candidate set. We describe a set of eight heuristics below. The 

? 



actual subset of these tests that will be used for SDOI will be 

determined empirically (see section 7.3). 

The first test to be considered, t1, requires an exact match between 

the anchor text and the concept’s preferred name. The second test, 

t2, extends this pattern and requires that the anchor text exactly 

match any one of the concept’s pre-identified synonyms (e.g. as 

materialized in the redirect pages in Wikipedia). These two tests 

can be used to replicate the proposals in [4, 8]. In more 

specialized domains however, with complex multi-token mentions 

and with nascent ontologies that have small and incomplete 

synonym sets, these two tests would result in a weak recall rate of 

the correct concept. The anchor text of “supervised learning of a 

sequential tagging model” for example would be missed because 

it is too specialized an expression to become an official synonym. 

We define two additional candidacy tests for consideration. One 

of the tests, t3, probes into the documents in the training corpus to 

determine whether the anchor text was also linked to this concept. 

In a sense, this test extends that of the synonym test in that at 

some future time some of these matching anchor texts will likely 

become official synonyms for the concept. 

Given that a large proportion of concept mentions and concept 

synonyms are composed of more than one token, the final primary 

test, t4, accepts a concept node where any of the component 

tokens match. Table 2 summarizes the four primary tests of 

candidacy. 

Table 2 – the primary tests used to determine 

whether concept node (oc) becomes a member of the 

candidate concept set (Cm) for anchor text (am). 

t 1 The anchor text (a m) matches the concept's preferred name (p c)

t 2 The anchor text (a m) matches a synonym of the concept (o c)

t 3

The anchor text (a m) matches a linked anchor text  (in some other 

document) to the concept, a k' d k , (a k' ,o c ) and k≠m

t 4

A token in the anchor text  (a m) matches a token within the preferred 

name (p c), a synonym (s in S c), or a linked anchor text (a k) in some 

other document  

Finally, each of the four primary tests is associated with an 

alternative test that is based on the use of the stemmed versions of 

the text being compared. We denote these tests as: ts1, ts2, ts3, and 

ts4. Note that, if a test succeeds on a primary test then it will also 

succeed on the stemmed version of the test. 

5. CONCEPT LINKING FEATURES 
Given a candidate concept set for each mention, and given 

training examples that identify the correct concept link, the task of 

identifying the concept links in unseen documents can be 

accomplished by training a supervised binary classification model. 

This section describes the feature vector associated with each 

paired mention/concept training case that will be used to train the 

classifier. Table 3 illustrates the structure of the training data 

produced and Table 4 presents a summary of the (non-collective) 

features about to be described. 

Note that the features under the category of “Collective Features” 

are recursively defined (they are based on predictions for some 

mentions). The evaluation of these features is achieved with an 

iterative classification algorithm described in Section 6.1. 

Table 3 – Illustration of the structure of the training data used 

for the linking task. A feature vector is created for each 

mention in the training corpus and concept candidate from the 

ontology. The vector is then labeled based on whether it 

corresponds to the link assigned by the human annotator. 
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5.1 Anchor Text-based Features f(am,oc) 

Each of the eight candidacy tests defined in the previous section 

are included as binary features. The intuition for their inclusion is 

that these tests can signal how closely a mention’s anchor text 

matches text associated with the concept node. 

5.2 Text Window-based Features f(tm,oc) 

Another source of features can be based on text near the concept 

mention (its text window) and from the text used to describe the 

concept in the ontology. The feature included in SDOI that is 

based on this information is the cosine distance between the 

normalized bag-of-word vector representations of the text window 

and of the ontology description. This feature is proposed in [4] 

(they also include dot product and Jaccard similarity). 

5.3 Document-based Features f(dm,oc) 

The entire document can be used to inform the classification 

decision. Two proposed features are: 1) the cosine distance 

between the normalized bag-of-word vector representations of the 

document and the ontology description (also proposed in [4]), and 

2) the token position of the concept mention within the document 

(1st token, 2nd token … ). The intuition of the later feature is that 

different types of concepts are expressed near the beginning of a 

document rather than later on. 

5.4 Concept-based Features f(oc) 

The candidate concept node on its own along with its role within 

the ontology (without knowledge of the specific concept mention 

being considered) can also inform the classification decision. For 

example, [4] and [9] propose the use of the frequency that a 

concept is linked to (its inlink count) as a feature. We include this 

count as a feature, |I(oc)| and also include the count of internal 

links extending out of the concept, |O(oc)|. The first feature signals 

the popularity of the concept as a reference. The second feature 



can signal whether the concept has received significant attention 

by the ontology designers in the form of additional links. 

5.5 Corpus Based-based Features f(oc,D-dm) 

Interestingly, the training corpus can also be an alternative source 

of information for predictor features. Indeed the t3 candidacy test 

signals the presence in the corpus of an identical mention. An 

additional corpus-based feature is the count of documents that 

also have external links to the ontology concept: |E(oc)|. 

An implementational challenge with this feature source, 

particularly during cross-validation studies, is that when 

calculating a mention’s corpus-based feature care must be taken to 

exclude all of the other mentions that occur within the document. 

If an anchor text for example is repeated elsewhere in the same 

document then in order to truthfully replicate the testing 

environment the other mentions in the document cannot influence 

the calculation of the feature. Thus, the value associated with this 

feature for a given mention can differ for every document in the 

training corpus. 

5.6 Candidate Set-based Features  f(Cmc) 

Awareness of the size and membership of entire set of candidate 

concepts associated with the concept mention can inform the 

classification decision. For example it is riskier to pick a concept 

from a large candidate set than from a candidate set composed of 

only two members. 

5.7 Collective-based Features  f(oc,Sm) 

We describe a set of recursively defined features whose 

calculation requires knowledge about the label for some of the 

links that we are trying to predict. With possession of some 

disambiguated links to the ontology, the ontology can be used to 

provide some background knowledge into the classification 

decision for the remaining links. For example, if we knew that a 

document mentioned the concept “supervised learning algorithm” 

then the decision of which candidate concept to predict for the 

mention of “feature” may be improved (i.e. predictor feature, not 

computer program feature, nor database attribute). How to attain 

such a partial set of labeled links will be addressed in the next 

section. Let Sm be the context set of disambiguated concepts in 

document dm. 

In order to replicate the work in [9] we include the relatedness 

measure they propose, which in turn is based on the Normalized 

Google Distance (NGD) metric [2] that assesses the dissimilarity 

between two sets. 

 

Table 4 – SDOI’s Features for Concept Mention Linking 

FEATURE DEFINITION 

cos(dm,oc) 

The bag-of-word cosine similarity between the 

document and the concept description, as 

proposed in [4]. 

tok(am,dm) 
Number of tokens between the start of the 

document and the first token in the mention. 

|I(oc)| 
Cardinality of all internal links into oc, as 

proposed in [4] and [9]. 

|O(oc)| Cardinality of all internal links from oc. 

|E(oc)| 
Cardinality of all external links into oc from the 

corpus D 

|Ci | 
Cardinality of the set of candidate concepts. 

i.e. 

|I(Ci)| 

Count of internal links into all candidate concept 

nodes. 

|I(oj’) | + |I(oj’’) | + …,  for all oj Ci 

R|I(oj,Ci)| 

Relative proportion of the internal links into the 

candidate concept relative to overall size.  

|I(oj)| / |I(Ci)| 

|O(Ci)| 

Count of internal links out from all candidate 

concept nodes. 

|O(oj’) | + |O(oj’’) | + …,  for all oj Ci 

R|O(oj,Ci)| 

Relative proportion of the internal links out from 

the candidate concept relative to overall size.  

|I(oj) | / |O(Ci)| 

|E(Ci)| 

Count of external links into all candidate concept 

nodes. 

|E(oj’)| + |E(oj’’)| + …,  for all oj Ci 

R|E(oj,Ci)| 

Relative proportion of the external links into the 

candidate concept relative to overall size.  

|E(oj)| / |E(Ci)| 

Given two ontology concept nodes (oa, ob) the relatedness 

function proposed in [9] tests the links into two concepts 

nodes(oa, ob), where A=I(oa), and B=I(oa). Also, the [0, ] 

function range of NDG is converted to a similarity metric by 

truncating the output to [0,1] and then subtracting it by 1. 

 

We extend this feature space by also including the components 

used in the calculation of NDG. We also include a Jaccard set 

similarity feature. Table 5 defines the collective features. In the 

case where the context set of mentions is empty (when no 

mentions have been linked) these features all calculate to zero (0). 



Table 5 – Definition of the collective features. 

FEATURE DEFINITION 

|Si| 
The cardinality of the set of context 

concepts. 

IS(Si) 
The count of internal links to the set of 

context concepts. 

AIS(Si) 
The average number internal links into each 

of the context concepts. 

AM S(oj,Si) 

The average cardinality of the intersection 

between the links into concept oj and the 

internal links into the anchor concepts in Si.  

Ca b(oj,Si), where ok Si and oj≠ok. 

AMW08rel(oj,Si) 

The average weighted relatedness between 

the concept node oj and each of the concept 

nodes in Si, as proposed in [9]. 

MW08 (Si) 

The sum of the relatedness between each 

concept in Si. to the other concepts in Si. 

This feature is proposed in [9] to inform the 

classifier about the entire context set. 

AJacc(oj,Si) 

The average Jaccard set similarity between 

the links into the oj concept and each of the 

concept nodes in Si.  

 

6. ITERATIVE SET-BASED CLASSIFIER 
Given a set of feature vectors with a binary label one could apply 

an off-the-shelf supervised classification algorithm to the task. 

However, two issues impede the casting of the problem in this 

manner: the recursive definition of the collective features and the 

need to classify at the level of the mention (not at the level of the 

mention/concept case). These two issues are addressed below: 

6.1 Collective Feature Handling 
The “Collective-based” features defined in Section 5.7 require 

that some portion of a document’s concept mentions be already 

linked to the ontology. Milken and Witten in [9] accomplish this 

assignment by first identifying some mentions heuristically as 

“context” mentions that do not require disambiguation. Kulkarni 

et al in [4] accomplish this assignment by specifying a custom 

objective function that is then optimized by, for example, 

iteratively committing to the next highest scoring mention. 

We also propose an incremental approach, but one that is directed 

by an iterative supervised classification algorithm inspired by the 

one proposed in [11]. Our algorithm first trains a model on an 

idealized context set, Sm, with all the correctly labeled mentions; 

then, during the testing phase, it iteratively grows the context set 

based on an increasing proportion of the most likely predictions.  

Because our collective features all zeroed (0) initially, we enhance 

the approach of [11] by first training a model on all but the 

collective features to seed the first guesses with informed choices. 

Assume that we define a constant number of iterations and a set 

of  training instances. The algorithm used is as follows: 

1. Train model (Mcol) without the collective features 

2. Train a model (Mcol) with the collective features 

3. For each iteration of  from 1 to  

a. Calculate the value for the collective features 

b. Apply model Mcol to the test set, if  is 1 

otherwise, apply model Mcol to the test set. 

c. Select the  most probable links, where  =  (  / ). 

4. Output the final set of predictions on all mentions. 

6.2 Candidate Set-based Predictions 
Recall that the goal of the task is to select at most one 

concept/link per candidate set. The classifier however may assign 

the label of “True” to more than one concept associated to a 

mention. When this is the case SDOI uses a tie-breaking rule. A 

possible tie-breaking rule is to make a random selection. 

However, if the supervised classifier used also reports a value that 

can rank the predictions according to their likelihood (e.g. support 

vector machines, decision tree, and logistic regression) then SDOI 

uses this number to select the more likely concept. 

7. EMPIRICAL EVALUATION 
The proposed SDOI algorithm is evaluated on a corpus whose 

concept mentions have been identified and linked to a domain-

specific ontology. The corpus is composed of the paper abstracts 

of ACM’s KDD 2009 conference, and the ontology is based on a 

semantic wiki created specifically for the field of data mining. To 

our knowledge this is the first ontology and annotated corpus for a 

computing discipline. The corpus and ontology are publicly 

available5. They are summarized below and additional details are 

forthcoming in a separate publication6. Further we test the 

portability of the model trained on the above data to identify and 

link concepts mentions from abstracts of a separate conference 

track: IEEE’s ICDM 2009 conference. 

7.1 Benchmark Datasets 

7.1.1 The kdd09cam1 Corpus 
The annotated corpus used in the study, kdd09cma1, is 

composed of the 139 abstracts for the papers accepted to ACM’s 

SIGKDD conference which took place in 2009 (KDD-2009)7. The 

competitive peer-reviewed conference on the topic of data mining 

and knowledge discovery from databases has acceptance rates in 

the range of 20% -25%. The annotation of the corpus 

(identification and linking of concept mentions) was performed by 

one of the authors and was performed in two separate phases. We 

first identified mentions of concepts that would be understood 

and/or are often used within the data mining community without 

consideration for what concepts existed in the ontology. Next an 

attempt was made to link the mentions to the concept in the 

ontology (described in the next section) that stood for the 

intended concept in the mention. On average the identification 

task took approximately 6 minutes per abstract, while the linking 

task took approximately 17 minutes per abstract. To evaluate the 

quality of the annotation, sixteen abstracts were randomly selected 

and the paper’s author was asked to review the annotation. 

Fourteen authors responded and simply accepted the annotation as 

is. 

                                                                 

5 A URL is temporarily withheld due to the double-blind review. 

6 The reference is temporarily withheld due to the double-blind 

review. 

7 The KDD-2009 abstracts are freely accessible from ACM’s 

Digital Library http://portal.acm.org/toc.cfm?id=1557019  

http://portal.acm.org/toc.cfm?id=1557019


The corpus bears similarities to corpora from the bio-medical 

domain such as the GENIA8 and BioCreAtIvE9 that are based on 

research paper abstracts found in MEDLINE abstracts and the 

terms are linked to concept in some ontology. Those corpora 

however focus on the annotation of basic named entities such as 

molecules, organisms, and locations. The kdd09cma1 corpus 

on the other hand contains very few named entities. Being from a 

formal science, its concept mentions range from single token ones 

such as “mining” to multi-token ones such as “minimal biclique 

set cover problem”. Also, in cases where named entities do appear 

they often are embedded within an abstract concept mention, as in 

“Gibbs sampling method”. The text was tokenized and assigned a 

part-of-speech role by using Charniak’s parser [3]. Table 6 

summarizes some key statistics about the corpus. 

Table 6 – Summary statistics of the kdd09cma1 corpus, 

including the minimum, median, and maximum per abstract. 

DOCUMENTS 139 
PER DOCUMENT 

(min/med/max) 

SENTENCES 1,186    3 |    8|  17 

TOKENS 29,139 105 |220| 367 

CONCEPT MENTIONS (100%)    7,580  26 |  52|  96 

SINGLE TOKEN (~66%)    5,001  12 |  35|  65 

MULTI TOKEN (~33%)    2,579    4 |  18|  38 

7.1.2 The dmswo1 Data Mining Ontology 
The ontology used in the study was based on a custom built 

semantic wiki10 created specifically for the field of data mining 

and text mining by one of the authors. Each concept has its own 

distinct wiki page11 and follows the structured English approach 

described in [5], where each concept contains: 1) A preferred 

name; 2) A one sentence definition in the form of “an X is a type 

of Y that …”; 3) A set of possible synonyms; 4) A set of 

relationships to other concepts stated in structured English; 5) A 

set of sample instances of the concept; 6) A set of counter-

examples of the concept; 7) A set of related terms whose 

relationship has not been formally defined; and 8) a set of relevant 

external references for the concept. Table 7 summarizes some 

statistics of the ontology. 

Table 7– Summary statistics of the dmswo1 ontology 

CONCEPTS 5,067 

CONCEPT LINKS 27,408 

 MIN MEDIAN MAX  

LINKS INTO A CONCEPT 0 3 157 

LINKS OUT OF A CONCEPT 2 3 444 

SYNONYMS PER CONCEPT 0 1 8 

Given the novelty of the corpus and ontology Table 8 summarizes 

some additional key statistics of the linking (external links) 

between the corpus and ontology. 

                                                                 

8 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA  
9 http://biocreative.sourceforge.net/  
10 A semantic wiki is a wiki that captures semantic information in 

a controlled natural language that enables the generation of a 

formal machine-processable ontology http://www.semwiki.org/ 
11 A URL to sample ontology page is withheld due to the double-

blind requirements. 

Table 8 – Summary statistics of the external links from the 

kdd09cma1 corpus to the dmswo1 ontology.  

DOCUMENTS 139 
PER DOCUMENT 

(min/median/max) 

LINKED MENTIONS 51.7%   3,920 10 | 26 | 66 

UNLINKED MENTIONS 48.3%   3,660   3 | 25 | 49 

DISTINCT CONCEPTS 

LINKED TO BY CORPUS 
820   9 | 19 | 50 

CONCEPTS UNIQUELY LINKED TO BY A 

SINGLE DOCUMENT 
0 |   2 | 17 

7.2 Baseline Algorithms 
We compare performance against baseline algorithms for each of 

the subtasks. 

For the mention identification task our baseline is a dictionary 

based algorithm (dict) that selects the longest sequence of tokens 

that matches a concept’s preferred name or synonym. This is the 

identification method used in [4] and the non-Wikipedia 

experiments in [9]. For our task this baseline will likely achieve 

poor recall rate because it cannot identify concept mentions that 

are not yet in the ontology. 

The main baseline algorithm for the linking task is the supervised 

approach proposed in [9]. We reimplemented the three features 

defined in their proposal (see Section 5: RI, AMW08rel, and 

MW08), and the algorithm’s two phased approach to handle the 

two collective features used. The first phase selects a set of 

context concepts (SMW08), and the second phase applies a binary 

classifier on the three features. We replicate the first phase by 

committing to all candidate concepts that pass tests t1 and t2, and 

that result in a single candidate concept. 

For the joint task of identification and linking, both the baseline 

and the proposed SDOI algorithm simply direct the output of their 

identification algorithm (the predicted anchor text for the concept 

mentions) as input to their linking algorithm. 

7.3 Mention Identification Evaluation 
The performance of the sequential model-based algorithm on the 

mention identification task was evaluated on the kdd09cma1 

corpus12. We present both the results of a leave-one-document-out 

analysis on the entire data in Table 9 and a learning curve analysis 

in Figure 4 that illustrates performance trends for different 

training set sizes. We also present performance on exact and 

partial matches of anchor text; where a partial match is defined as 

starting on the correct token but ending on a different token. From 

Table 9 we see that SDOI outperform the dictionary-based 

baseline algorithm both in precision and recall, but particularly in 

recall. This lift is due to SDOI’s sequential model’s ability to 

identify mentions not in the nascent ontology. 

From the learning curve in Figure 4 we infer that SDOI overtakes 

baseline performance after 30 to 50 annotated mentions, and that 

performance continues to improve significantly as additional 

training data is provided. Interestingly, the performance lift 

between feature spaces decreases with additional data. This 

                                                                 

12 We use the  conlleval.pl evaluation script from CONLL-2000. 

http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA
http://biocreative.sourceforge.net/
http://www.semwiki.org/
http://www.cnts.ua.ac.be/conll2000/chunking/conlleval.txt


suggests that high, expert-level performance, will require 

additional data more than advanced feature engineering. 

Finally, there is a significant effect when a partial match criteria is 

applied on multi-word mentions. A visual inspection of some of 

the cases where partial match succeeds suggests the issue is due to 

multi-word expressions that are divided differently by the 

annotator and the algorithm. When these mismatches occur the 

algorithm is doubly penalized for making two false predictions 

and for missing one true prediction. With partial matches then the 

algorithm receives one correct prediction and one false prediction. 

Table 9 -Average concept mention identification performance 

(Precision, Recall, and F1) and lift ratio, of the dictionary-

based baseline and SDOI algorithms on the kdd09cma1, 

under exact and partial definitions of mention matching. 

P R F1 P R F1

SDOI 70.8% 67.3% 69.0% 82.7% 78.6% 80.6%

dict 51.9% 40.2% 44.8% 61.5% 50.4% 54.1%

lift 36.4% 67.3% 54.0% 34.4% 56.0% 48.9%

Exact Match Partial Match

 

Figure 4  Log-scale learning curve analysis of SDOI’s and the 

baseline’s F1 performance on the kdd09cma1 dataset under 

exact and partial match criteria. For SDOI two features 

spaces: complete and abridged (POS and token) 
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7.4 Mention Linking Evaluation 

7.4.1 Candidacy Definition 
Before proceeding to assessing SDOI’s performance we first 

identify the subset of the eight candidacy tests defined in Section 

4 by empirical means. The definition of the candidacy selection 

heuristic can impact performance. Too restrictive a policy will 

limit the maximal attainable recall performance. Too liberal a 

policy could swamp the classifier with a large proportion of 

negative-to-positive training cases. We empirically test the effect 

on accuracy of incrementally adding individual tests (primary and 

stemmed13) in the following order: t1+t1s+t2+t2s+t3+t3s+t4+t4s. 

                                                                 

13 http://search.cpan.org/perldoc?Lingua%3A%3AStem  

Table 10 summarizes the impact of sequentially adding each of 

the tests. As the tests become more inclusive more training cases 

are available and the maximum accuracy increases. Based on this 

empirical analysis the candidacy test selected for SDOI included 

tests t1+t1s+t2+t2s+t3+t3s. Adding more tests beyond this point 

drops accuracy significantly, likely because the average number of 

training cases per mention increases from approximately 2.5 to 47 

cases per mention on average. 

Table 10 – Effect of the four candidacy tests (plus their 

stemmed version) on linking accuracy. The selected 

combination of tests is highlighted. 

Test  training cases 
max. possible 

accuracy
Accuracy

+ t 1 536                9.0% 13.7%

+ t 1s 1,278             19.1% 26.4%

+ t 2 3,126             40.4% 46.1%

+ t 2s 5,206             53.0% 46.0%

+ t 3 9,390             74.8% 56.7%

+ t 3s 11,598          77.3% 57.3%

+ t 4 296,086         90.1% 50.3%

+ t 4s 386,537         91.5% 49.3%  

7.4.2 Mention Linking Performance 
To estimate algorithm performance we performed a leave-one-out 

cross-validation study. Specifically, we iterated through all 139 

documents, leaving one document out of the training corpus and 

testing on all the mentions within the excluded document. The 

CRF++14 package was used to generate the sequential tagging 

model used in the identification task. SVMlight15 was used as the 

classification model training system used for the linking task. The 

number of iterations for the iterative classifier was set to five 

( =5). 

Performance is reported on the separate tasks of: 1) predicted 

concept node versus actual concept node in the ontology on the 

manually annotated concept mentions, and 2) predicted anchor 

text and concept node vs. actual anchor text and concept. Table 11 

summarizes the performance of the SDOI and baseline algorithms. 

Table 11 – Accuracy of the SDOI and baseline algorithms on 

the linking subtask applied to the kdd09cma1 corpus when 

based on true or predicted anchor text spans. 

SDOI MW08 SDOI MW08

On 'true' anchor text 57.30% 44.70% 63.21% 46.82%

On predicted anchor text 45.40% 17.70% 47.08% 19.14%

Exact Match Partial Match
Linking accuracy

 

On true anchor texts SDOI performed much better at linking 

concept mentions to the ontology than the baseline. This is likely 

due to the additional features and the expanded definition of 

candidacy. 

                                                                 

14 http://crfpp.sourceforge.net/ 

15 http://svmlight.joachims.org/  

http://search.cpan.org/perldoc?Lingua%3A%3AStem
http://crfpp.sourceforge.net/
http://svmlight.joachims.org/


On predicted anchor texts SDOI performed significantly better 

than the baseline because of the cumulative effects of performance 

on mention identification and linking. For many mentions the 

baseline algorithm could not make a link prediction because it had 

failed to identify them in the identification task. 

7.4.3 Collective Features & Iterative Classification 

Unexpectedly the collective features contributed negligibly to 

overall linking performance. As seen in Table 12, the first 

iteration of the algorithm (which does not yet benefit from 

collective features) is only marginally increased by the final 

iteration. This is a surprising result given the lift attributed to 

collective features in [4] and [9]. We explored whether SDOI’s 

marginal increase in performance is due to the significantly 

expanded feature space which leaves fewer ambiguities requiring 

deep insight into the roles of the concepts. As Table 12 shows, the 

collective features contribute more noticeably to the performance 

when only the anchor-text based features are retained. 

Table 12 – Average accuracy of SDOI after each iteration on 

the full feature set, and on only anchor text-based features. 

Iter. All Features Anchor Text + Collective

1 57.2% 47.9%

2 57.3% 49.7%

3 57.3% 49.9%

4 57.3% 50.0%

5 57.3% 50.2%  

7.5 Evaluation on ICDM’09 Abstracts 
To assess the portability of the models trained on kdd09cma1 

we tested the models on a different corpus that is also from the 

data mining domain. For this corpus we also performed two 

additional types of analysis: inter-annotator agreement and the 

time savings achieved when annotating a pre-annotated abstract. 

The second corpus is composed of twenty two manually annotated 

abstracts from the papers accepted into IEEE’s annual conference 

on data mining in 2009 (ICDM’09)16. Seven domain experts were 

involved in the annotation task. Each annotator was asked to 

select five abstracts of interest to them. To ensure that most 

abstracts would have more than one annotated version, the 

selected abstracts were ranked according to number of annotators 

that selected it, and the annotators were asked to annotate at least 

two abstracts in the ranked order. Some of the abstracts were pre-

annotated by SDOI or by the baseline algorithm (based on [9]). 

We created an annotation environment based on the semantic wiki 

that houses the kddo1 ontology. The annotation environment is 

unsophisticated but realistic since thousands of people use this 

annotation style and technology every day to edit pages on wikis 

such as Wikipedia. Annotators were asked to annotated using the 

following four-step procedure: 1) read the abstract on the official 

IEEE webpage for the paper, 2) identify and annotate concept 

mentions without referencing the ontology, 3) link mentions to 

their first best guess of the concepts preferred name in the 

                                                                 

16http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?reload=true&

punumber=5360037 

ontology, and 4) revise their annotations based on active search of 

the ontology (either by hyperlink navigation or keyword search). 

In eleven cases, abstracts were annotated by more than one 

person; ranging from two abstracts by four annotators to two 

abstracts by two annotators. We then created a single ground truth 

version of each abstract after reviewing the annotations. 

Two issues complicated the measurement of inter-annotator 

agreement and time-savings on this task. The first challenge was 

due to annotator’s “learning curve” with the annotation process. 

The first abstract was annotated more slowly and resulted in lower 

agreement than each of the subsequent documents. In response, 

we sometimes report that the results exclude the annotator’s first 

abstract. A second challenge with the timing data was the 

significant variance in the time required per mentions by each 

annotator. To accommodate for the variance, the time-savings 

analysis is restricted to the five annotators who annotated three or 

more abstracts. 

7.5.1 Portability Analysis 
The accuracy of SDOI and the baseline algorithm with respect to 

the ground truth was analyzed and the results reported in Table 

13. Performance on the second corpus is only slightly lower than 

those reported in the second row of Table 11; suggesting that the 

trained models are portable to other corpora. 

Table 13 - SDOI and baseline accuracy, trained on the 

kdd09cma1, and tested on the eleven ICDM’09 abstracts, 

where matches are exact or partial (correct start token). 

SDOI MW08 SDOI MW08

ICDM-2009 42.2% 15.6% 46.5% 17.5%

KDD-2009 (from Table 11) 45.4% 17.7% 47.1% 19.1%

Exact Match Partial MatchLinking accuracy on 

predicted anchor text

 

7.5.2 Inter-Annotator Agreement 
This section analyzes the agreement between the annotators’ 

output and the ground truth. This analysis empirically sets a 

maximum accuracy that we would expect an automated approach 

to achieve. The results presented in Table 14 indicate that, on 

average, 70% of each person’s annotations are identical to the 

ground truth. This result suggests subjectivity in the annotation 

(though this performance would be improved on with additional 

training for the annotators). Still, it also shows that SDOI’s 

current accuracy of 57.3% has room for improvement. 

Table 14 – Average accuracy of the annotator’s abstract 

versus the consolidated “gold” annotation. The second row 

accounts for the annotator’s “learning curve” by excluding the 

first abstract processed by each annotator. 

Match type: Exact Partial

All abstracts 65.8% 66.9%

First abstract withheld 71.8% 72.8%  

7.5.3 Time Savings Evaluation 
A final performance measure of interest is the time savings in the 

annotation process achieved by making use of an automated 

system’s predictions. This measure is particularly relevant to 

scenarios were annotation will be an ongoing process and where 

high-accuracy is required (such as for linking mentions in high-

quality conferences, and within business environments linking 

policy documents to official term definitions). We evaluate 



whether it is faster for an annotator to work from a pre-annotated 

document than from working from an unprocessed document. For 

this analysis we selected the five individuals who annotated three 

or more abstracts and excludes their first abstract. Table 15 

presents the timing results. 

Table 15 – Seconds required for annotators (who annotated 

three or more abstracts) to annotate each unique concept 

mention: per phase and three pre-annotation scenarios. 

 Phase No Pre-Annot. MW08 SDOI

B - Identification 8.0                      9.3     3.5     

C - Linking 15.6                    12.8  6.9     

D - revision 9.9                      12.2  8.5     

B, C, D 33.6                    34.3  18.9   

On average, annotators required significantly less time on all three 

phases when abstracts were pre-annotated using SDOI’s output. 

The annotators also benefited little or negatively from correcting 

the baseline predictions - they had to spend a significant amount 

of time to correct mistakes. This result suggests that SDOI has 

achieved sufficient accuracy to be of value on some tasks. To the 

best of our knowledge, this type of time-savings evaluation has 

not been performed to date on a related task. 

8. CONCLUSION 
In this paper we present a supervised learning based algorithm, 

SDOI, for the task of identifying and linking concept mentions to 

an ontology. The algorithm is validated against a novel corpus of 

abstracts from a data mining conference that have been annotated 

and linked to a data mining ontology; and further tested on an 

additional corpus to assess the portability of the produced models. 

Our main contributions are the ability to identify mentions not yet 

present in the ontology, proposing a set of tests for selecting 

candidate concepts, and proposing a formalized and expanded 

feature set. We explore the use of iterative classification as a 

principled and purely supervised approach to handling the 

collective features; however, we also present evidence that their 

contribution is significantly reduced by the introduction of the 

expanded feature set, compared to [4] and [9]. Finally, we present 

a novel time savings analysis which suggests that SDOI achieves 

high enough accuracy to be of practical value in some tasks. 

This paper suggests several directions for future research. It will 

be interesting to explore an integration of the identification and 

linking models in order to better inform the boundary decisions 

for mentions. In addition, alternative evaluation criteria are worth 

investigating that would award partial credit for predictions that 

are close to the correct answer in terms of overlap with the correct 

mention or selection of a parent or child concept. We plan to 

expand the corpus to include all past KDD and ICDM conference 

abstracts, and to expand the data mining ontology to include many 

of the main concepts and relationships discovered in the process. 

Ideally we would like to integrate SDOI into the submission 

process of future data mining conferences in order to have the 

authors themselves validate and correct the pre-annotated versions 

of their abstracts. 
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