Difference between revisions of "Computational Epidemiology Task"

From GM-RKB
Jump to: navigation, search
(ContinuousReplacement)
(Tag: continuous replacement)
m (Text replacement - "[[::" to "[[")
 
Line 11: Line 11:
  
 
=== 2014 ===
 
=== 2014 ===
* ([[2014_ISISANetworkedEpidemiologybased|Beckman et al., 2014]]) ⇒ [[::Richard Beckman]], [[::Keith R. Bisset]], [[::Jiangzhuo Chen]], [[::Bryan Lewis]], [[::Madhav Marathe]], and [[::Paula Stretz]]. ([[::2014]]). “ISIS: A Networked-epidemiology based Pervasive Web App for Infectious Disease Pandemic Planning and Response.” In: [[::Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining]] ([[::KDD-2014]]) Journal. ISBN:978-1-4503-2956-9 [http://dx.doi.org/10.1145/2623330.2623375 doi:10.1145/2623330.2623375]  
+
* ([[2014_ISISANetworkedEpidemiologybased|Beckman et al., 2014]]) ⇒ [[Richard Beckman]], [[Keith R. Bisset]], [[Jiangzhuo Chen]], [[Bryan Lewis]], [[Madhav Marathe]], and [[Paula Stretz]]. ([[2014]]). “ISIS: A Networked-epidemiology based Pervasive Web App for Infectious Disease Pandemic Planning and Response.” In: [[Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining]] ([[KDD-2014]]) Journal. ISBN:978-1-4503-2956-9 [http://dx.doi.org/10.1145/2623330.2623375 doi:10.1145/2623330.2623375]  
 
** QUOTE: [[We]] describe [[ISIS]], a [[high-performance-computing-based application]] to support [[computational epidemiology]] of [[infectious disease]]s. </s> ... Using [[ISIS]], one can carry out detailed [[computational experiment]]s as they pertain to [[planning]] and [[response]] in the [[event of a pandemic]]. </s> [[ISIS]] is designed to [[support networked epidemiology]] -- [[study]] of [[epidemic process]]es over [[social contact network]]s. </s> ...
 
** QUOTE: [[We]] describe [[ISIS]], a [[high-performance-computing-based application]] to support [[computational epidemiology]] of [[infectious disease]]s. </s> ... Using [[ISIS]], one can carry out detailed [[computational experiment]]s as they pertain to [[planning]] and [[response]] in the [[event of a pandemic]]. </s> [[ISIS]] is designed to [[support networked epidemiology]] -- [[study]] of [[epidemic process]]es over [[social contact network]]s. </s> ...
  
 
=== 2009 ===
 
=== 2009 ===
* ([[2009_InferenceinEpidemicModelsWithou|McKinley et al., 2009]]) ⇒ [[::Trevelyan McKinley]], [[::Alex R Cook]], and [[::Robert Deardon]]. ([[::2009]]). &ldquo;[https://www.researchgate.net/profile/Rob_Deardon/publication/46556834_Inference_in_Epidemic_Models_without_Likelihoods/links/5df7b6eb299bf10bc36107bd/Inference-in-Epidemic-Models-without-Likelihoods.pdf Inference in Epidemic Models Without Likelihoods].&rdquo; In: The International Journal of Biostatistics, 5(1).  
+
* ([[2009_InferenceinEpidemicModelsWithou|McKinley et al., 2009]]) ⇒ [[Trevelyan McKinley]], [[Alex R Cook]], and [[Robert Deardon]]. ([[2009]]). &ldquo;[https://www.researchgate.net/profile/Rob_Deardon/publication/46556834_Inference_in_Epidemic_Models_without_Likelihoods/links/5df7b6eb299bf10bc36107bd/Inference-in-Epidemic-Models-without-Likelihoods.pdf Inference in Epidemic Models Without Likelihoods].&rdquo; In: The International Journal of Biostatistics, 5(1).  
 
** QUOTE: ... [[Likelihood-based inference]] for [[epidemic model]]s can be challenging, in part due to difficulties in [[evaluating the likelihood]]. </s> [[The problem]] is particularly acute in [[epidemic model|model]]s of [[large-scale outbreak]]s, and [[unobserved data|unobserved]] or [[partially observed data]] further complicates [[epidemic modeling|this process]]. </s> [[Here we]] [[investigate the performance]] of [[Markov Chain Monte Carlo]] and [[Sequential Monte Carlo algorithm]]s for [[parameter inference]], where the [[routine]]s are based on [[approximate likelihood]]s generated from [[model simulation]]s. </s> ...  
 
** QUOTE: ... [[Likelihood-based inference]] for [[epidemic model]]s can be challenging, in part due to difficulties in [[evaluating the likelihood]]. </s> [[The problem]] is particularly acute in [[epidemic model|model]]s of [[large-scale outbreak]]s, and [[unobserved data|unobserved]] or [[partially observed data]] further complicates [[epidemic modeling|this process]]. </s> [[Here we]] [[investigate the performance]] of [[Markov Chain Monte Carlo]] and [[Sequential Monte Carlo algorithm]]s for [[parameter inference]], where the [[routine]]s are based on [[approximate likelihood]]s generated from [[model simulation]]s. </s> ...  
  

Latest revision as of 22:37, 26 March 2020

A Computational Epidemiology Task is an epidemiological task that is a computational task.



References

2020

2014

2009