Difference between revisions of "Pseudo-Inverse Algorithm"

From GM-RKB
Jump to: navigation, search
Line 12: Line 12:
 
** a [[Gram-Schmidt Algorithm]],
 
** a [[Gram-Schmidt Algorithm]],
 
** a [[Householder Algorithm]].
 
** a [[Householder Algorithm]].
* <B>See:</B> [[Function Fitting Algorithm]], [[Pseudoinverse Matrix]], [[Matrix Decomposition]], [[QR Factorization]], [[Singualar Value Decomposition]].
+
* <B>See:</B> [[Function Fitting Algorithm]], [[Pseudoinverse Matrix]], [[Matrix Decomposition]], [[QR Factorization]], [[Singular Value Decomposition]].
 
----
 
----
 
----
 
----

Revision as of 12:18, 13 July 2019

A Pseudo-Inverse Algorithm is a Matrix Decomposition Algorithm that can solve a least square system such that each column vector of the solution has a minimum norm.



References

2019

  1. Moore, E. H. (1920). "On the reciprocal of the general algebraic matrix". Bulletin of the American Mathematical Society. 26 (9): 394–95. doi:10.1090/S0002-9904-1920-03322-7.
  2. Bjerhammar, Arne (1951). "Application of calculus of matrices to method of least squares; with special references to geodetic calculations". Trans. Roy. Inst. Tech. Stockholm. 49.
  3. Penrose, Roger (1955). "A generalized inverse for matrices". Proceedings of the Cambridge Philosophical Society. 51 (3): 406–13. doi:10.1017/S0305004100030401.

2016

2008

1965

1955


Categpry:Mathematics