Zero Vector

From GM-RKB
(Redirected from zero vector)
Jump to navigation Jump to search

A Zero Vector is a vector composed of only zeroes.



References

2016

  • (Wolfram MathWorld, 2016) ⇒ Weisstein, Eric W.,(1999-2016) "Null Vector." From MathWorld -- A Wolfram Web Resource. http://mathworld.wolfram.com/NullVector.html Retrieved 2016-6-18
    • There are several meanings of “null vector” in mathematics. The most common usage is the n-dimensional null vector 0 is the n-dimensional vector of length 0 (i.e., the vector with n components, each of which is 0).

      A second meaning of null vector when applied to a matrix A is a nonzero vector x with the property that Ax=0.

      A third meaning of null vector when applied to a vector (which appears to be slightly nonstandard but is used for example in the Wolfram Language's FindIntegerNullVector function), is a nonzero vector a such that for a given vector x, the dot product satisfies a·x=0.

2015

2011

  • http://en.wikipedia.org/wiki/Null_vector
    • In linear algebra, the null vector or zero vector or empty vector is the vector (0, 0, …, 0) in Euclidean space, all of whose components are zero. It is usually written with an arrow head above or below it : [math]\displaystyle{ \vec{0} }[/math] or 0 or simply 0. A zero vector has arbitrary direction, but is orthogonal (ie perpendicular, normal) to all other vectors with the same number of components.

      A different kind of vector, also called null vector or zero vector, arises in various generalizations of Euclidean space, as explained below.

      Since the word null has a more general (and very different) meaning in computer programming, many programmers prefer the term zero vector to avoid confusion. For example, the statement if (MyVector == Null ) would intuitively be interpreted as if MyVector is a null pointer by many programmers, as opposed to if MyVector is a null/zero vector.