Chalcogen

From GM-RKB
Jump to navigation Jump to search

A Chalcogen is a chemical element that in group 16 of the periodic table.



References

2023a

2023b

2023c

  • (Wikipedia, 2023) ⇒ https://en.wikipedia.org/wiki/Chalcogen Retrieved:2023-6-19.
    • The chalcogens (ore forming) (/ˈkælkədʒənz/ KAL-kə-jənz) are the chemical elements in group 16 of the periodic table. This group is also known as the oxygen family. Group 16 consists of the elements oxygen (O), sulfur (S), selenium (Se), tellurium (Te), and the radioactive elements polonium (Po) and livermorium (Lv).[1] Often, oxygen is treated separately from the other chalcogens, sometimes even excluded from the scope of the term "chalcogen" altogether, due to its very different chemical behavior from sulfur, selenium, tellurium, and polonium. The word "chalcogen" is derived from a combination of the Greek word khalkόs (χαλκός) principally meaning copper (the term was also used for bronze/brass, any metal in the poetic sense, ore or coin),[2] and the Latinized Greek word genēs, meaning born or produced.[3][4]

      Sulfur has been known since antiquity, and oxygen was recognized as an element in the 18th century. Selenium, tellurium and polonium were discovered in the 19th century, and livermorium in 2000. All of the chalcogens have six valence electrons, leaving them two electrons short of a full outer shell. Their most common oxidation states are −2, +2, +4, and +6. They have relatively low atomic radii, especially the lighter ones.[5]

      Lighter chalcogens are typically nontoxic in their elemental form, and are often critical to life, while the heavier chalcogens are typically toxic.[1] All of the naturally occurring chalcogens have some role in biological functions, either as a nutrient or a toxin. Selenium is an important nutrient (among others as a building block of selenocysteine) but is also commonly toxic.[6] Tellurium often has unpleasant effects (although some organisms can use it), and polonium (especially the isotope polonium-210) is always harmful as a result of its radioactivity.

      Sulfur has more than 20 allotropes, oxygen has nine, selenium has at least eight, polonium has two, and only one crystal structure of tellurium has so far been discovered. There are numerous organic chalcogen compounds. Not counting oxygen, organic sulfur compounds are generally the most common, followed by organic selenium compounds and organic tellurium compounds. This trend also occurs with chalcogen pnictides and compounds containing chalcogens and carbon group elements.

      Oxygen is generally obtained by separation of air into nitrogen and oxygen. Sulfur is extracted from oil and natural gas. Selenium and tellurium are produced as byproducts of copper refining. Polonium is most available in naturally occurring actinide-containing materials. Livermorium has been synthesized in particle accelerators. The primary use of elemental oxygen is in steelmaking. Sulfur is mostly converted into sulfuric acid, which is heavily used in the chemical industry.[6] Selenium's most common application is glassmaking. Tellurium compounds are mostly used in optical disks, electronic devices, and solar cells. Some of polonium's applications are due to its radioactivity.[1]

  1. 1.0 1.1 1.2 Emsley, John, Nature's Building Blocks: An A-Z Guide to the Elements, 2011, Oxford University Press, New York, NY, ISBN 978-0-19-960563-7, Pages 375–383, 412–415, 475–481, 511–520, 529–533, 582
  2. The New Shorter Oxford Dictionary, 1993, Oxford University Press, ISBN 978-0-19-861134-9, page 368, Retrieved from https://archive.org
  3. Merriam-Webster, chalcogen, 2013, Retrieved from http://www.merriam-webster.com, Accessed on November 25, 2013
  4. M. Bouroushian, Electrochemistry of Metal Chalcogenides, 2010, Monographs in Electrochemistry, ISBN: 978-3-642-03967-6, DOI: 10.1007/978-3-642-03967-6
  5. Jackson, Mark (2002). Periodic Table Advanced. Bar Charts Inc. ISBN 978-1-57222-542-8.
  6. 6.0 6.1 Gray, Theodore (2011). The Elements. Black Bay and Leventhal publishers.