Inductive Reasoning Algorithm

Jump to navigation Jump to search

An Inductive Reasoning Algorithm is a reasoning algorithm that applies inductive operations.



  • (Wikipedia, 2018) ⇒ Retrieved:2018-6-24.
    • Inductive reasoning (as opposed to deductive reasoning or abductive reasoning) is a method of reasoning in which the premises are viewed as supplying some evidence for the truth of the conclusion. While the conclusion of a deductive argument is certain, the truth of the conclusion of an inductive argument may be probable, based upon the evidence given. Many dictionaries define inductive reasoning as the derivation of general principles from specific observations, though some sources disagree with this usage.

      The philosophical definition of inductive reasoning is more nuanced than simple progression from particular/individual instances to broader generalizations. Rather, the premises of an inductive logical argument indicate some degree of support (inductive probability) for the conclusion but do not entail it; that is, they suggest

      truth but do not ensure it. In this manner, there is the possibility of moving from general statements to individual instances (for example, statistical syllogisms, discussed below).





In abduction, H is generally restricted to a set of atomic ground or existentially quantified formulae (called assumptions) and B is generally quite large relative to H. On the other hand, in induction, H generally consists of universally quantified Horn clauses (called a theory or knowledge base), and B is relatively small and may even be empty. In both cases, following Occam's Razor, it is preferred that H be kept as small and simple as possible.