Learning Task

Jump to: navigation, search

A learning task is a decisioning task that requires improved task performance with each additional learning experience.



  • (Wikipedia, 2009) ⇒ http://en.wikipedia.org/wiki/Machine_learning
    • As a broad subfield of artificial intelligence, machine learning is concerned with the design and development of algorithms and techniques that allow computers to "learn". At a general level, there are two types of learning: inductive, and deductive. ...
  • http://dli.grainger.uiuc.edu/glossary.htm
    • The ability of a machine to improve its performance based on previous results.
  • http://clopinet.com/isabelle/Projects/ETH/Exam_Questions.html
    • Machine Learning is a discipline dedicated to the design and study of artificial learning systems, particularly systems that learn from examples. Learning machines include linear models, artificial neural networks, and decisions trees.
  • Jerome H. Friedman http://www-stat.stanford.edu/brochure/part4.html#friedman
    • One such area that is receiving considerable recent attention is machine learning ("neural networks"). Here one has a system under study that responds to a set of simultaneous input signals. The response is characterized by a set of output signals. The goal is to learn the relationship between the inputs and the outputs in the most general way possible. This exercise generally has two purposes: prediction and understanding. With prediction one is given a set of input values and wishes to predict or forecast likely values of the corresponding outputs without having to actually run the system. Sometimes prediction is the only purpose. Often, however, one wishes to use the derived relationship to gain understanding of how the system works. Such knowledge is often useful in its own right, for example in science, or it may be used to help improve the characteristics of the system, as in industrial or engineering applications.


  • (Wilson, 2008a) ⇒ Bill Wilson. (2008). “The Machine Learning Dictionary for COMP9414." University of New South Wales, Australia.
    • machine learning: Machine learning is said to occur in a program that can modify some aspect of itself, often referred to as its state, so that on a subsequent execution with the same input, a different (hopefully better) output is produced. See unsupervised learning and supervised learning, and also function approximation algorithms and symbolic learning algorithms.


  • (Witten & Frank, 2000) ⇒ Ian H. Witten, and Eibe Frank. (2000). “Data Mining: Practical Machine Learning Tools and Techniques with Java implementations." Morgan Kaufmann.
    • Four basically different styles of learning appear in data mining applications. In classification learning, a learning scheme takes a set of classified examples from which it is expected to learn a way of classifying unseen examples. In association learning, any association between features is sought, not just ones that predict a particular class value. In clustering, groups of examples that belong together are sought. In numeric prediction, the outcome to be predicted is not a discrete class but a numeric quantity. Regardless of the type of learning involve, we call then thing to be learn the concept, and the output produce by a learning scheme the concept description.