sklearn.ensemble Module
(Redirected from sklearn.ensemble)
		
		
		
		Jump to navigation
		Jump to search
		An sklearn.ensemble Module is an sklearn module that contains a collection of decision tree ensemble learning systems.
- Context:
- It can (often) reference a sklearn.tree system.
- sklearn.tree.Model_Name(self, arguments)or simply- sklearn.tree.Model_Name()- where DTName is the name of the selected decision tree ensemble learning system. 
 
 
- It can (often) reference a sklearn.tree system.
- Example(s)
- sklearn.ensemble.AdaBoostClassifierAn AdaBoost classifier.
- sklearn.ensemble.AdaBoostRegressorAn AdaBoost regressor.
- sklearn.ensemble.BaggingClassifierA Bagging classifier.
- sklearn.ensemble.BaggingRegressorA Bagging regressor.
- sklearn.ensemble.ExtraTreesClassifierAn Ensemble Extra Trees Classifier.
- sklearn.ensemble.ExtraTreesRegressorAn Ensemble Extra Trees Regressor.
- sklearn.ensemble.GradientBoostingClassifierGradient Boosting Classifier.
- sklearn.ensemble.GradientBoostingRegressorGradient Boosting Regressor.
- sklearn.ensemble.IsolationForestIsolation Forest Algorithm.
- sklearn.ensemble.RandomForestClassifierA Random Forest Classifier.
- sklearn.ensemble.RandomForestRegressorA Random Forest Regressor.
- sklearn.ensemble.RandomTreesEmbeddingA Totally Random Trees Embedding System.
- sklearn.ensemble.VotingClassifierSoft Voting/Majority Rule Classifier for unfitted estimators.
- …
 
- Counter-Example(s):
- sklearn.svm, a collection of Support Vector Machine algorithms.
- sklearn.manifold, a collection of Manifold Learning Systems.
- sklearn.tree, a collection of Decision Tree Learning Systems.
- sklearn.metrics, a collection of Metrics Subroutines.
- sklearn.covariance,a collection of Covariance Estimators.
- sklearn.cluster.bicluster, a collection of Spectral Biclustering Algorithms.
- sklearn.linear_model, a collection of Linear Model Regression Systems.
- sklearn.neighbors, a collection of K Nearest Neighbors Algorithms.
- sklearn.neural_network, a collection of Neural Network Systems.
 
- See: Decision Trees, Regression Task, Classification Task, Ensemble Learning, sklearn Boston Dataset-based Regression Trees Evaluation Task.
References
2017
- (Scikit Learn, 2017) ⇒ http://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble Retrieved:2017-10-22
- QUOTE: The sklearn.ensemble module includes ensemble-based methods for classification, regression and anomaly detection.        User guide: See the Ensemble methods section for further details. - ensemble.AdaBoostClassifier([…])An AdaBoost classifier.
- ensemble.AdaBoostRegressor([base_estimator, …])An AdaBoost regressor.
- ensemble.BaggingClassifier([base_estimator, …])A Bagging classifier.
- ensemble.BaggingRegressor([base_estimator, …])A Bagging regressor.
- ensemble.ExtraTreesClassifier([…])An extra-trees classifier.
- ensemble.ExtraTreesRegressor([n_estimators, …])An extra-trees regressor.
- ensemble.GradientBoostingClassifier([loss, …])Gradient Boosting for classification.
- ensemble.GradientBoostingRegressor([loss, …])Gradient Boosting for regression.
- ensemble.IsolationForest([n_estimators, …])Isolation Forest Algorithm.
- ensemble.RandomForestClassifier([…])A random forest classifier.
- ensemble.RandomForestRegressor([…])A random forest regressor.
- ensemble.RandomTreesEmbedding([…])An ensemble of totally random trees.
- ensemble.VotingClassifier(estimators[, …])Soft Voting/Majority Rule classifier for unfitted estimators.- partial dependence 
- ensemble.partial_dependence.partial_dependence(…), Partial dependence of target_variables.
- ensemble.partial_dependence.plot_partial_dependence(…), Partial dependence plots for features.
 
 
- QUOTE: The sklearn.ensemble module includes ensemble-based methods for classification, regression and anomaly detection.