Projection Matrix: Difference between revisions

From GM-RKB
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
** It can also be stated as: A square matrix <math>P</math> is a projection matrix if and only if <math>P^2=P</math>
** It can also be stated as: A square matrix <math>P</math> is a projection matrix if and only if <math>P^2=P</math>
** It can be a symmetric matrix if and only if the vector space projection is [[orthogonal]].
** It can be a symmetric matrix if and only if the vector space projection is [[orthogonal]].
** It can be a [[Hermitian matrix]] if and only if the vector space projection satisfies <math><v,P_w>=<v_W,P_w>=<P_v,w></math>, where the inner product is the [[Hermitian inner product]]. Here <math>P_w \in W</math> and <math>V_w \in W</math>.
** It can be a [[Hermitian matrix]] if and only if the vector space projection satisfies <math><v,P_w>=<v_W,P_w>=<P_v,w></math>, where the inner product is the [[Hermitian inner product]]. Here <math>P_w \in W</math> and <math>v_W \in W</math>.
* <B>Example(s):</B>
* <B>Example(s):</B>
** An example of a [[nonsymmetric]] projection matrix is <math>\begin{bmatrix}0 & 1 \\ 0 & 1\end{bmatrix}</math>, which projects onto the line <math>y=x</math>.
** An example of a [[nonsymmetric]] projection matrix is <math>\begin{bmatrix}0 & 1 \\ 0 & 1\end{bmatrix}</math>, which projects onto the line <math>y=x</math>.

Revision as of 13:21, 14 January 2016

A projection matrix [math]\displaystyle{ P }[/math] is a [math]\displaystyle{ n \times n }[/math] square matrix that gives a vector space projection from the n-dimensional space [math]\displaystyle{ \R^n }[/math] to a subspace [math]\displaystyle{ W }[/math].

  • Context:
    • It can also be stated as: A square matrix [math]\displaystyle{ P }[/math] is a projection matrix if and only if [math]\displaystyle{ P^2=P }[/math]
    • It can be a symmetric matrix if and only if the vector space projection is orthogonal.
    • It can be a Hermitian matrix if and only if the vector space projection satisfies [math]\displaystyle{ \lt v,P_w\gt =\lt v_W,P_w\gt =\lt P_v,w\gt }[/math], where the inner product is the Hermitian inner product. Here [math]\displaystyle{ P_w \in W }[/math] and [math]\displaystyle{ v_W \in W }[/math].
  • Example(s):
    • An example of a nonsymmetric projection matrix is [math]\displaystyle{ \begin{bmatrix}0 & 1 \\ 0 & 1\end{bmatrix} }[/math], which projects onto the line [math]\displaystyle{ y=x }[/math].
  • See: Linear Transformation.


References

2009