2009 DistinctValueSynopses

From GM-RKB
Jump to navigation Jump to search

Subject Headings: Distinct Value Estimation Task, Distinct Value Estimation Algorithm.

Notes

Quotes

Abstract

  • The task of estimating the number of distinct values (DVs) in a large dataset arises in a wide variety of settings in computer science and elsewhere. We provide DV estimation techniques for the case in which the dataset of interest is split into partitions. We create for each partition a synopsis that can be used to estimate the number of DVs in the partition. By combining and extending a number of results in the literature, we obtain both suitable synopses and DV estimators. The synopses can be created in parallel, and can be easily combined to yield synopses and DV estimates for "compound" partitions that are created from the base partitions via arbitrary multiset union, intersection, or difference operations. Our synopses can also handle deletions of individual partition elements. We prove that our DV estimators are unbiased, provide error bounds, and show how to select synopsis sizes in order to achieve a desired estimation accuracy. Experiments and theory indicate that our synopses and estimators lead to lower computational costs and more accurate DV estimates than previous approaches.

1. Introduction

  • The task of determining the number of distinct values (DVs) in a large dataset arises in a wide variety of settings. One classical application is population biology, where the goal is to determine the number of distinct species, based on observations of many individual animals. In computer science, applications include network monitoring, document search, predicate-selectivity estimation for database query optimization, storage-size estimation for physical database design, and discovery of metadata features such as keys and duplicates.
  • The number of DVs can be computed exactly by sorting the dataset and then executing a straightforward scan-and-count pass over the data; alternatively, a hash table can be constructed and used to compute the number of DVs. Neither of these approaches scales well to the massive datasets often encountered in practice, because of heavy time and memory requirements. A great deal of research over the past 25 years has therefore focused on scalable approximate methods. These methods work either by drawing a random sample of the data items and statistically extrapolating the number of DVs, or by taking a single pass through the data and using hashing techniques to compute an estimate using a small, bounded amount of memory.
  • Almost all of this work has focused on producing a given synopsis of the dataset, such as a random sample or bit vector, and then using the synopsis to obtain a DV estimate. Issues related to combining and exploiting synopses in the presence of union, intersection, and difference operations on multiple datasets have been largely unexplored, as has the problem of handling deletions of items from the dataset. Such issues are the focus of this paper, which is about DV estimation methods when the dataset of interest is split into disjoint partitions, i.e., disjoint multisets.a The idea is to create a synopsis for each partition so that (i) the synopsis can be used to estimate the number of DVs in the partition and (ii) the synopses can be combined to create synopses for "compound" partitions that are created from the base partitions using multiset union, intersection, or difference operations.

,

 AuthorvolumeDate ValuetitletypejournaltitleUrldoinoteyear
2009 DistinctValueSynopsesKevin Beyer
Rainer Gemulla
Peter J. Haas
Berthold Reinwald
Yannis Sismanis
Distinct-Value Synopses for Multiset Operations10.1145/1562764.1562787