2012 ConfidenceIntervalsfortheDiffer

Jump to navigation Jump to search

Subject Headings: ROC AUC, pAUC, Continuous-Scale Diagnostic Test.


Cited By



As new diagnostic tests are developed and marketed, it is very important to be able to compare the accuracy of a given two continuous-scale diagnostic tests. An effective method to evaluate the difference between the diagnostic accuracy of two tests is to compare partial areas under the receiver operating characteristic curves (AUCs). In this paper, we review existing parametric methods. Then, we propose a new semiparametric method and a new nonparametric method to investigate the difference between two partial AUCs. For the difference between two partial AUCs under each method, we derive a normal approximation, define an empirical log-likelihood ratio, and show that the empirical log-likelihood ratio follows a scaled chi-square distribution. We construct five confidence intervals for the difference based on normal approximation, bootstrap, and empirical likelihood methods. Finally, extensive simulation studies are conducted to compare the finite-sample performances of these intervals, and a real example is used as an application of our recommended intervals. The simulation results indicate that the proposed hybrid bootstrap and empirical likelihood intervals outperform other existing intervals in most cases.



 AuthorvolumeDate ValuetitletypejournaltitleUrldoinoteyear
2012 ConfidenceIntervalsfortheDifferXin Huang
Gengsheng Qin
Yan Yuan
Xiao-hua Zhou
Confidence Intervals for the Difference Between Two Partial AUCs10.1111/j.1467-842X.2012.00648.x2012