2005 FeatureSelectionbasedonMutualIn

From GM-RKB
Jump to: navigation, search

Subject Headings: Feature Selection Algorithm; Mutual Information

Notes

Cited By

Quotes

Abstract

Feature selection is an important problem for pattern classification systems. We study how to select good features according to the maximal statistical dependency criterion based on mutual information. Because of the difficulty in directly implementing the maximal dependency condition, we first derive an equivalent form, called minimal-redundancy-maximal-relevance criterion (mRMR), for first-order incremental feature selection. Then, we present a two-stage feature selection algorithm by combining mRMR and other more sophisticated feature selectors (e.g., wrappers). This allows us to select a compact set of superior features at very low cost. We perform extensive experimental comparison of our algorithm and other methods using three different classifiers (naive Bayes, support vector machine, and linear discriminate analysis) and four different data sets (handwritten digits, arrhythmia, NCI cancer cell lines, and lymphoma tissues). The results confirm that mRMR leads to promising improvement on feature selection and classification accuracy.

References

;

 AuthorvolumeDate ValuetitletypejournaltitleUrldoinoteyear
2005 FeatureSelectionbasedonMutualInHanchuan Peng
Fuhui Long
Chris Ding
Feature Selection based on Mutual Information Criteria of Max-dependency, Max-relevance, and Min-redundancy10.1109/TPAMI.2005.1592005
AuthorHanchuan Peng +, Fuhui Long + and Chris Ding +
doi10.1109/TPAMI.2005.159 +
titleFeature Selection based on Mutual Information Criteria of Max-dependency, Max-relevance, and Min-redundancy +
year2005 +