Edge-Deployed LLM System
Jump to navigation
Jump to search
An Edge-Deployed LLM System is a resource-constrained distributed LLM inference system that can support edge-deployed LLM tasks (at network edge locations).
- AKA: Edge LLM System, On-Device LLM System, Local LLM Deployment System.
- Context:
- It can typically implement Edge LLM Model Quantizations through edge LLM INT8 quantization, edge LLM INT4 quantization, and edge LLM mixed-precision techniques.
- It can typically perform Edge LLM Model Compressions through edge LLM weight pruning, edge LLM knowledge distillation, and edge LLM layer reduction.
- It can typically utilize Edge LLM Memory Optimizations through edge LLM memory mapping, edge LLM cache management, and edge LLM swap mechanisms.
- It can typically enable Edge LLM Latency Reductions through edge LLM inference optimization, edge LLM batch processing, and edge LLM pipeline parallelism.
- It can typically ensure Edge LLM Privacy Protections through edge LLM local processing, edge LLM data isolation, and edge LLM secure enclaves.
- ...
- It can often support Edge LLM Hardware Accelerations through edge LLM GPU utilization, edge LLM NPU integration, and edge LLM FPGA deployment.
- It can often facilitate Edge LLM Model Splittings through edge LLM layer distribution, edge LLM computation offloading, and edge LLM hybrid processing.
- It can often enable Edge LLM Adaptive Inferences through edge LLM dynamic quantization, edge LLM early exit, and edge LLM conditional computation.
- It can often implement Edge LLM Power Managements through edge LLM energy optimization, edge LLM thermal control, and edge LLM battery awareness.
- ...
- It can range from being a Standalone Edge LLM System to being a Federated Edge LLM System, depending on its edge LLM network topology.
- It can range from being a Fixed Edge LLM System to being a Mobile Edge LLM System, depending on its edge LLM deployment mobility.
- It can range from being a Single-Model Edge LLM System to being a Multi-Model Edge LLM System, depending on its edge LLM model capacity.
- It can range from being a Real-Time Edge LLM System to being a Best-Effort Edge LLM System, depending on its edge LLM latency requirements.
- ...
- It can integrate with Edge LLM IoT Devices for edge LLM sensor data processing, edge LLM local analytics, and edge LLM autonomous decisions.
- It can connect to Edge LLM Gateways for edge LLM network communication, edge LLM protocol translation, and edge LLM data aggregation.
- It can interface with Edge LLM Cloud Backends for edge LLM model updates, edge LLM backup processing, and edge LLM orchestration.
- It can communicate with Edge LLM Peer Systems for edge LLM collaborative inference, edge LLM load balancing, and edge LLM failover support.
- It can synchronize with Edge LLM Management Platforms for edge LLM monitoring, edge LLM configuration, and edge LLM lifecycle management.
- ...
- Example(s):
- Mobile Edge LLM Systems, such as:
- Smartphone Edge LLM Systems, such as:
- Tablet Edge LLM Systems, such as:
- IoT Edge LLM Systems, such as:
- Smart Home Edge LLM Systems, such as:
- Industrial IoT Edge LLM Systems, such as:
- Automotive Edge LLM Systems, such as:
- Healthcare Edge LLM Systems, such as:
- ...
- Mobile Edge LLM Systems, such as:
- Counter-Example(s):
- Cloud-Based LLM Systems, which lack edge LLM resource constraints and edge LLM local processing.
- Data Center LLM Systems, which lack edge LLM mobility requirements and edge LLM power limitations.
- Traditional Edge Computing Systems, which lack edge LLM model capability and edge LLM language understanding.
- See: Edge Computing, Model Quantization, Model Compression, On-Device AI, Federated Learning, TinyML, Mobile Computing.