# WikiText Math Statement

 N(k) \dot \sum^{k}_{j=1}\frac{2^{r(j)}-1}{log(1+j)} $\displaystyle{ N(k) \bullet \sum^{k}_{j=1}\frac{2^{r(j)}-1}{log(1+j)} }$ \implies x \land \lnot y \equiv a \lor b \impliedby $\displaystyle{ \implies x \land \lnot y \equiv a \lor b \impliedby }$ p(y_t, y_{t+1}, ..., y_{t+k} \mid \mathbf{x}) $\displaystyle{ p(y_t, y_{t+1}, ..., y_{t+k} \mid \mathbf{x}) }$ ^a_bx^c_d $\displaystyle{ ^a_bx^c_d }$ \sum_{n=1}^\infty; \prod_{j=1}^n; \intop_a^b $\displaystyle{ \sum_{n=1}^\infty }$; $\displaystyle{ \prod_{j=1}^n }$; $\displaystyle{ \intop_a^b }$ \underset{x}{\operatorname{arg\,max}} \, f(x) := \{x\ \vert \ \forall y : f(y) \le f(x)\} $\displaystyle{ \underset{x}{\operatorname{arg\,max}} \, f(x) := \{x\ \vert \ \forall y : f(y) \le f(x)\} }$ \underbrace{x+\cdots+x}_{n\text{ times}} $\displaystyle{ \underbrace{x+\cdots+x}_{n\text{ times}} }$ \begin{eqnarray} y &=& (x-1)^2 \\ &=& x^2 - 2x + 1 \end{eqnarray} $\displaystyle{ \begin{eqnarray} y &=& (x-1)^2 \\ &=& x^2 - 2x + 1 \end{eqnarray} }$ \begin{bmatrix} aaa & b\cr c & ddd \end{bmatrix} $\displaystyle{ \begin{bmatrix} aaa & b\cr c & ddd \end{bmatrix} }$ A \cup B \subseteq C \subset D \cap E $\displaystyle{ A \cup B \subseteq C \subset D \cap E }$ v \left\lbrace m \ln \left( \frac{1}{m} \sum_{j=k}^{n} \lambda_j \right) - \sum_{j=k}^{n} \ln(\lambda_j) \right\rbrace[/itex] $\displaystyle{ v \left\lbrace m \ln \left( \frac{1}{m} \sum_{j=k}^{n} \lambda_j \right) - \sum_{j=k}^{n} \ln(\lambda_j) \right\rbrace }$ \Pr(w_t \mid c_j; \hat{\theta}) \log \left( \frac{\Pr(w_t \mid \lnot c_j; \hat{\theta})} {\Pr(w_t \mid c_j; \hat{\theta})} \right), $\displaystyle{ \Pr(w_t \mid c_j; \hat{\theta}) \log \left( \frac{\Pr(w_t \mid \lnot c_j; \hat{\theta})} {\Pr(w_t \mid c_j; \hat{\theta})} \right), }$ f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases} $\displaystyle{ f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases} }$ $\displaystyle{ }$ $\displaystyle{ }$ \ll, \lt, \le, \preceq, =, \neq, \triangleq, \gt, \ge, \gg  $\displaystyle{ \ll, \lt, \le, \preceq, =, \neq, \triangleq, \gt, \ge, \gg }$ \sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=} $\displaystyle{ \sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=} }$ \Biggl[ \biggl( \Bigl[ \bigl( \lbrack \lbrace \langle \matrix{a & b\cr c & d} \rangle \rbrace \rbrack \bigl) \Bigl] \biggl) \Biggl] $\displaystyle{ \Biggl[ \biggl( \Bigl[ \bigl( \lbrack \lbrace \langle \matrix{a & b\cr c & d} \rangle \rbrace \rbrack \bigl) \Bigl] \biggl) \Biggl] }$ \leftleftarrows ,\Leftarrow, \leftarrow, \dashleftarrow, \downarrow, \Downarrow, \leftrightarrow, \Leftrightarrow, \curvearrowleft, \Uparrow, \uparrow, \dashrightarrow, \leftrightharpoons, \circlearrowright, \rightarrow, \Rightarrow, \hookrightarrow, \longmapsto $\displaystyle{ \leftleftarrows, \Leftarrow, \leftarrow, \dashleftarrow, \downarrow, \Downarrow, \leftrightarrow, \Leftrightarrow, \curvearrowleft, \Uparrow, \uparrow, \dashrightarrow, \leftrightharpoons, \circlearrowright, \rightarrow, \Rightarrow, \hookrightarrow, \longmapsto }$ \vdash, \nvdash, \Vdash, \nVdash, \vDash  $\displaystyle{ \vdash, \nvdash, \Vdash, \nVdash, \vDash }$ \mid, \parallel, \nparallel, \nshortparallel, \nshortmid $\displaystyle{ \mid, \parallel, \nparallel, \nshortparallel, \nshortmid }$ \alpha,\beta,\chi,\delta,\epsilon,\eta,\gamma,\iota,\kappa,\lambda,\mu,\nu,\omega,\phi,\pi,\rho,\sigma,\tau,\theta,\xi,\zeta \Alpha,\Beta,\Chi,\Delta,\Epsilon,\Eta,\Gamma,\Iota,\Kappa,\Lambda,\Mu,\Nu,\Omega,\Phi,\Pi,\Rho,\Sigma,\Tau,\Theta,\Xi,\Zeta \varepsilon, \digamma, \vartheta, \varkappa, \varpi, \varrho, \varsigma, \varphi $\displaystyle{ \alpha,\beta,\chi,\delta,\epsilon,\eta,\gamma,\iota,\kappa,\lambda,\mu,\nu,\omega,\phi,\pi,\rho,\sigma,\tau,\theta,\xi,\zeta }$ $\displaystyle{ \Alpha,\Beta,\Chi,\Delta,\Epsilon,\Eta,\Gamma,\Iota,\Kappa,\Lambda,\Mu,\Nu,\Omega,\Phi,\Pi,\Rho,\Sigma,\Tau,\Theta,\Xi,\Zeta }$ $\displaystyle{ \varepsilon, \digamma, \vartheta, \varkappa, \varpi, \varrho, \varsigma, \vartheta, \varphi }$ A a B b ... L l ... O ... U V W X Y Z $\displaystyle{ A a B b \ ... L l \ ... O \ ... U V W X Y Z }$ \mathit{A} \mathit{a} \mathit{B} \mathit{b} ... \mathit{L} \mathit{l} ... \mathit{O} ... \mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} $\displaystyle{ \mathit{A} \mathit{a} \mathit{B} \mathit{b} \ ... \mathit{L} \mathit{l} \ ... \mathit{O} ... \mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} }$ \mathcal{A} \mathcal{a} \mathcal{B} \mathcal{b} ... \mathcal{L} \mathcal{l} ... \mathcal{O} ... \mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z} $\displaystyle{ \mathcal{A} \mathcal{a} \mathcal{B} \mathcal{b} \ ... \mathcal{L} \mathcal{l} \ ... \mathcal{O} ... \mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z} }$ \mathscr{A} \mathscr{a} \mathscr{B} \mathscr{b} ... \mathscr{L} \mathscr{l} ... \mathscr{O} ... \mathscr{U} \mathscr{V} \mathscr{W} \mathscr{X} \mathscr{Y} \mathscr{Z} $\displaystyle{ \mathscr{A} \mathscr{a} \mathscr{B} \mathscr{b} \ ... \mathscr{L} \mathscr{l} \ ... \mathscr{O} ... \mathscr{U} \mathscr{V} \mathscr{W} \mathscr{X} \mathscr{Y} \mathscr{Z} }$ \mathbf{x}, {\bf x}, \vec{x}, \mathbf{y}, \vec{y}, {\bf y}, \mathbf{z}, {\bf z}, \vec{z} $\displaystyle{ \mathbf{x}, {\bf x}, \vec{x}, \mathbf{y}, \vec{y}, {\bf y}, \mathbf{z}, {\bf z}, \vec{z} }$ \empty $\displaystyle{ \empty }$ \checkmark $\displaystyle{ \checkmark }$ \P $\displaystyle{ \P }$ \C, \mathbb{C} $\displaystyle{ \C, \mathbb{C} }$ (complex numbers) \N, \mathbb{N} $\displaystyle{ \N, \mathbb{N} }$ (natural numbers) \Q, \mathbb{Q} $\displaystyle{ \Q, \mathbb{Q} }$ (rational numbers) \R, \mathbb{R} $\displaystyle{ \R, \mathbb{R} }$ (real numbers \Z, \mathbb{Z} $\displaystyle{ \Z, \mathbb{Z} }$ (integer numbers \F, \mathbb{F} $\displaystyle{ \F, \mathbb{F} }$ (a finite field) \HH, \mathcal{H} $\displaystyle{ \HH, \mathcal{H} }$ (a Hilbert space)   X = \begin{cases} 0, & \text{if}\ a=1 \\ 1, & \text{otherwise} \end{cases}   $\displaystyle{ X = \begin{cases} 0, & \text{if}\ a=1 \\ 1, & \text{otherwise} \end{cases} }$  \lfloor\frac{\gamma}{2} \le \frac{\phi}{2} \rceil  $\displaystyle{ \lfloor\frac{\gamma}{2} \le \frac{\phi}{2} \rceil }$ \bszero \boldsymbol{0}; \bsone \boldsymbol{1} $\displaystyle{ \bszero }$ (vector of zeros); $\displaystyle{ \bsone }$ (vector of ones) \bst \boldsymbol{t}; \bsv \boldsymbol{v}; \bsw \boldsymbol{w}; \bsx \boldsymbol{x}; \bsy \boldsymbol{y}; \bsz \boldsymbol{z} $\displaystyle{ \bst, \bsv, \bsw, \bsx, \bsy, \bsz }$ \bsDelta: \boldsymbol{\Delta} \bigtriangledown \triangledown V(\underline{x}) $\displaystyle{ \bsDelta: }$ (vector $\displaystyle{ \Delta }$) $\displaystyle{ \bigtriangledown \triangledown V(\underline{x}) }$ \E $\displaystyle{ \E }$ (the exponential) \rd x $\displaystyle{ \rd x }$ (roman d for use in integrals, e.g. $\displaystyle{ \int f(x) \rd x }$) \text{Prerequisite : Justification}_1, \dots , \text{Justification}_n $\displaystyle{ \frac{\text{Prerequisite : Justification}_1, \dots , \text{Justification}_n}{\text{Conclusion}} }$ \hat{o}, \widehat{oo}, \check{o}, \tilde{o}, \widetilde{oo}, \acute{o}, \grave{o}, \dot{o}, \ddot{o}, \breve{o}, \bar{o}, \vec{o}, \hat{\imath}, \vec{\jmath} $\displaystyle{ \hat{o}, \widehat{oo}, \check{o}, \tilde{o}, \widetilde{oo}, \acute{o}, \grave{o}, \dot{o}, \ddot{o}, \breve{o}, \bar{o}, \vec{o}, }$ $\displaystyle{ \hat{\imath}, \vec{\jmath} }$ (accents). \sqrt[5]{2x} $\displaystyle{ \sqrt[5]{2x} }$ (roots).