Ordinal Value Prediction Algorithm: Difference between revisions
Jump to navigation
Jump to search
(Created page with "An Ordinal Value Prediction Algorithm is a value prediction algorithm that ... * <B>See:</B> Categorical Value Prediction Algoriothm, Numeric Value Prediction Al...") |
m (Text replacement - ". " to ". ") |
||
(14 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
An [[Ordinal Value Prediction Algorithm]] is a [[ | An [[Ordinal Value Prediction Algorithm]] is a [[data-driven prediction algorithm]] that can be implemented by an [[ordinal value prediction system]] to solve an [[ordinal value prediction task]]. | ||
* <B> | ** … | ||
* <B>Counter-Example(s):</B> | |||
** [[Categorical Value Prediction Algorithm]]. | |||
** [[Numeric Value Prediction Algorithm]]. | |||
* <B>See:</B> [[Ranking Algorithm]]. | |||
---- | ---- | ||
---- | ---- | ||
== References == | == References == | ||
===2000=== | === 2000 === | ||
* ([[Herbrich et al., 2000]]) | * ([[Herbrich et al., 2000]]) ⇒ [[Ralf Herbrich]], Thore Graepel, and Klaus Obermayer. ([[2000]]). “[http://research.microsoft.com/apps/pubs/default.aspx?id=65610 Large Margin rank boundaries for ordinal regression]." MIT Press. | ||
=== 1999 === | === 1999 === | ||
* ([[1999_SupportVectorLearningforOrdinal|Herbrich et al., 1999]]) | * ([[1999_SupportVectorLearningforOrdinal|Herbrich et al., 1999]]) ⇒ [[Ralf Herbrich]], [[Thore Graepel]], and [[Klaus Obermayer]]. ([[1999]]). “[http://www.herbrich.me/papers/icann99_ordinal.pdf Support Vector Learning for Ordinal Regression].” In: Proceedings of the Ninth International Conference on Artificial Neural Networks. | ||
---- | ---- | ||
__NOTOC__ | __NOTOC__ | ||
[[Category: | [[Category:Concept]] |
Latest revision as of 13:15, 2 August 2022
An Ordinal Value Prediction Algorithm is a data-driven prediction algorithm that can be implemented by an ordinal value prediction system to solve an ordinal value prediction task.
- …
- Counter-Example(s):
- See: Ranking Algorithm.
References
2000
- (Herbrich et al., 2000) ⇒ Ralf Herbrich, Thore Graepel, and Klaus Obermayer. (2000). “Large Margin rank boundaries for ordinal regression." MIT Press.
1999
- (Herbrich et al., 1999) ⇒ Ralf Herbrich, Thore Graepel, and Klaus Obermayer. (1999). “Support Vector Learning for Ordinal Regression.” In: Proceedings of the Ninth International Conference on Artificial Neural Networks.