Graphical Model Learning Algorithm: Difference between revisions

From GM-RKB
Jump to navigation Jump to search
m (Text replacement - ". ----" to ". ----")
m (Text replacement - ". " to ". ")
 
Line 24: Line 24:
=== 1997 ===
=== 1997 ===
* ([[1997_AnIntroductionToGraphicalModels|Jordan, 1997]]) ⇒ [[Michael I. Jordan]]. ([[1997]]). “[http://www.cs.berkeley.edu/~jordan/papers/nips-handout.ps.Z An Introduction to Graphical Models]." Tutorial at NIPS-1997.
* ([[1997_AnIntroductionToGraphicalModels|Jordan, 1997]]) ⇒ [[Michael I. Jordan]]. ([[1997]]). “[http://www.cs.berkeley.edu/~jordan/papers/nips-handout.ps.Z An Introduction to Graphical Models]." Tutorial at NIPS-1997.
* ([[1997_MachineLearning|Mitchell, 1997]]) ⇒ [[Tom M. Mitchell]]. ([[1997]]). “[http://www.cs.cmu.edu/~tom/mlbook.html Machine Learning]." McGraw-Hill.  
* ([[1997_MachineLearning|Mitchell, 1997]]) ⇒ [[Tom M. Mitchell]]. ([[1997]]). “[http://www.cs.cmu.edu/~tom/mlbook.html Machine Learning]." McGraw-Hill.


=== 1996 ===
=== 1996 ===

Latest revision as of 18:54, 1 August 2022

A Graphical Model Learning Algorithm is a statistical learning algorithm that can solve a Graphical Model Learning Task (that requires a probabilistic graphical model).



References

2006

2001

  • (Jensen, 2001) ⇒ F. V. Jensen. (2001). “Bayesian Networks and Decision Graphs." Springer.
    • Introductory book.

1998

1997

1996

  • (Lauritzen, 1996) ⇒ S. Lauritzen. (1996). “Graphical Models.” Oxford.
    • mathematical exposition of the theory of graphical models.

1988

  • (Pearl, 1998) ⇒ Judea Pearl. (1988). “Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann.
    • The seminal book on the graphical models