Randomized Linear Algebra Algorithm: Difference between revisions

From GM-RKB
Jump to navigation Jump to search
m (Text replacement - ". ----" to ". ----")
m (Text replacement - "<P> [[" to "<P>  [[")
 
Line 9: Line 9:
=== 2016 ===
=== 2016 ===
* ([[2016_RandNLARandomizedNumericalLinea|Drineas & Mahoney, 2016]]) ⇒ [[Petros Drineas]], and [[Michael W. Mahoney]]. ([[2016]]). “RandNLA: Randomized Numerical Linear Algebra.” In: [[Communications of the ACM Journal]], 59(6). [http://dx.doi.org/10.1145/2842602 doi:10.1145/2842602]  
* ([[2016_RandNLARandomizedNumericalLinea|Drineas & Mahoney, 2016]]) ⇒ [[Petros Drineas]], and [[Michael W. Mahoney]]. ([[2016]]). “RandNLA: Randomized Numerical Linear Algebra.” In: [[Communications of the ACM Journal]], 59(6). [http://dx.doi.org/10.1145/2842602 doi:10.1145/2842602]  
** QUOTE: Particularly remarkable is the use of [[randomized algorithm|randomization]] — typically assumed to be a property of the [[input data]] due to, for example, [[noise]] in the [[data generation mechanism]]s — as an [[algorithmic resource|algorithmic]] or [[computational resource]] for the [[algorithm development|development]] of improved [[algorithms for fundamental matrix problem]]s such as [[matrix multiplication]], [[least-squares (LS) approximation]], [[low-rank matrix approximation]], and [[Laplacian-based linear equation solver]]s. </s>        <P>       [[Randomized Linear Algebra Algorithm|Randomized Numerical Linear Algebra (RandNLA)]] is an interdisciplinary research area that exploits [[randomized algorithm|randomization]] as a [[computational resource]] to develop improved [[matrix algorithm|algorithm]]s for [[large-scale linear algebra]] problems.32 </s>
** QUOTE: Particularly remarkable is the use of [[randomized algorithm|randomization]] — typically assumed to be a property of the [[input data]] due to, for example, [[noise]] in the [[data generation mechanism]]s — as an [[algorithmic resource|algorithmic]] or [[computational resource]] for the [[algorithm development|development]] of improved [[algorithms for fundamental matrix problem]]s such as [[matrix multiplication]], [[least-squares (LS) approximation]], [[low-rank matrix approximation]], and [[Laplacian-based linear equation solver]]s. </s>        <P>         [[Randomized Linear Algebra Algorithm|Randomized Numerical Linear Algebra (RandNLA)]] is an interdisciplinary research area that exploits [[randomized algorithm|randomization]] as a [[computational resource]] to develop improved [[matrix algorithm|algorithm]]s for [[large-scale linear algebra]] problems.32 </s>


----
----

Latest revision as of 01:51, 27 February 2024

A Randomized Linear Algebra Algorithm is a linear algebra algorithm that is a randomized numerical algorithm.



References

2016