Rounding Integer Linear Programming Algorithm: Difference between revisions

From GM-RKB
Jump to navigation Jump to search
m (Text replacement - ". ----" to ". ----")
m (Text replacement - "ions]] " to "ion]]s ")
 
Line 20: Line 20:
=== 1990 ===
=== 1990 ===
* ([[1990_ApproximationAlgsForSchedUnrelParMachines|Lenstra et al., 1990]]) ⇒ Jan Karel Lenstra, David B. Shmoys, and [[Éva Tardos]]. ([[1990]]). “Approximation Algorithms for Scheduling Unrelated Parallel Machines.” In: [[Mathematical Programming Journal|Mathematical Programming]], 46(1). [http://dx.doi.org/10.1007/BF01585745 doi:10.1007/BF01585745]
* ([[1990_ApproximationAlgsForSchedUnrelParMachines|Lenstra et al., 1990]]) ⇒ Jan Karel Lenstra, David B. Shmoys, and [[Éva Tardos]]. ([[1990]]). “Approximation Algorithms for Scheduling Unrelated Parallel Machines.” In: [[Mathematical Programming Journal|Mathematical Programming]], 46(1). [http://dx.doi.org/10.1007/BF01585745 doi:10.1007/BF01585745]
** One of the most natural [[Integer Linear Program Algorithm|strategies]] to obtain good [[ILP Output|solutions]] to an [[Integer Linear Programming Task|integer linear program]] is to drop the [[Integrality Constraint|integrality constraints]], solve the resulting [[Integer Linear Programming Task|linear programming problem]], and then [[ILP Solution Rounding Task|round the solution]] to an [[Integral Task Output|integral solution]].
** One of the most natural [[Integer Linear Program Algorithm|strategies]] to obtain good [[ILP Output|solution]]s to an [[Integer Linear Programming Task|integer linear program]] is to drop the [[Integrality Constraint|integrality constraints]], solve the resulting [[Integer Linear Programming Task|linear programming problem]], and then [[ILP Solution Rounding Task|round the solution]] to an [[Integral Task Output|integral solution]].


----
----

Latest revision as of 07:32, 22 August 2024

A Rounding Integer Linear Programming Algorithm is an Integer Linear Programming Algorithm that replaces the integrality constraints with a unit interval constraint, solves the resulting linear programming problem, and then rounds the solution to an integral solution.



References

2010

2009

1990