Semidefinite Programming Task: Difference between revisions

From GM-RKB
Jump to navigation Jump to search
No edit summary
No edit summary
Line 7: Line 7:
<p>where <math>C</math> is a [[symmetric matrix]].The objective function is the linear function <math>C.X</math>  
<p>where <math>C</math> is a [[symmetric matrix]].The objective function is the linear function <math>C.X</math>  
and there are <math>m</math> [[linear equation]]s that <math>X</math> must satisfy, namely <math>A_i X = b_i,i =1,...,m.</math></p>
and there are <math>m</math> [[linear equation]]s that <math>X</math> must satisfy, namely <math>A_i X = b_i,i =1,...,m.</math></p>
** It can be solved by [[Primal-Dual Algorithm]].
* <B>Example(s):</U></B>
* <B>Example(s):</U></B>
** <p>For <math>C=\begin{bmatrix}1 & 2 & 3 \\ 2 & 9 & 0 \\ 3 & 0 & 7\end{bmatrix},A_1=\begin{bmatrix} 1 & 0 & 1 \\ 0 & 3 & 7 \\ 1 & 7 & 5 \end{bmatrix}, A_2=\begin{bmatrix} 0 & 2 & 8 \\ 2 & 6 & 0 \\ 8 & 0 & 4 \end{bmatrix}</math> and <math>b_1=11, b_2=19</math>. Then the variable <math>X</math> will be a symmetric matrix: <math>X=\begin{bmatrix}x_{11}&x_{12}&x_{13}\\x_{21}&x_{22}&x_{23}\\x_{31}&x_{32}&x_{33}\end{bmatrix},C.X=x_{11}+2x_{12}+3x_{13}+2x_{21}+9x_{22}+0x_{23}+3x_{31}+0x_{32}+7x_{33}=x_{11}+4x_{12}+6x_{13}+9x_{22}+0x_{23}+7x_{33}</math>
** <p>For <math>C=\begin{bmatrix}1 & 2 & 3 \\ 2 & 9 & 0 \\ 3 & 0 & 7\end{bmatrix},A_1=\begin{bmatrix} 1 & 0 & 1 \\ 0 & 3 & 7 \\ 1 & 7 & 5 \end{bmatrix}, A_2=\begin{bmatrix} 0 & 2 & 8 \\ 2 & 6 & 0 \\ 8 & 0 & 4 \end{bmatrix}</math> and <math>b_1=11, b_2=19</math>. Then the variable <math>X</math> will be a symmetric matrix: <math>X=\begin{bmatrix}x_{11}&x_{12}&x_{13}\\x_{21}&x_{22}&x_{23}\\x_{31}&x_{32}&x_{33}\end{bmatrix},C.X=x_{11}+2x_{12}+3x_{13}+2x_{21}+9x_{22}+0x_{23}+3x_{31}+0x_{32}+7x_{33}=x_{11}+4x_{12}+6x_{13}+9x_{22}+0x_{23}+7x_{33}</math>

Revision as of 12:15, 12 January 2016

A Semidefinite Programming Task is a convex optimization task that accepts a linear objective function over the intersection of the cone of positive semidefinite matrices with an affine space.

Minimize [math]\displaystyle{ C.X }[/math]

such that [math]\displaystyle{ A_i X=b_i,i=1,\dots,m \\ X \geq 0 }[/math]

where [math]\displaystyle{ C }[/math] is a symmetric matrix.The objective function is the linear function [math]\displaystyle{ C.X }[/math] and there are [math]\displaystyle{ m }[/math] linear equations that [math]\displaystyle{ X }[/math] must satisfy, namely [math]\displaystyle{ A_i X = b_i,i =1,...,m. }[/math]

  • Example(s):
    • For [math]\displaystyle{ C=\begin{bmatrix}1 & 2 & 3 \\ 2 & 9 & 0 \\ 3 & 0 & 7\end{bmatrix},A_1=\begin{bmatrix} 1 & 0 & 1 \\ 0 & 3 & 7 \\ 1 & 7 & 5 \end{bmatrix}, A_2=\begin{bmatrix} 0 & 2 & 8 \\ 2 & 6 & 0 \\ 8 & 0 & 4 \end{bmatrix} }[/math] and [math]\displaystyle{ b_1=11, b_2=19 }[/math]. Then the variable [math]\displaystyle{ X }[/math] will be a symmetric matrix: [math]\displaystyle{ X=\begin{bmatrix}x_{11}&x_{12}&x_{13}\\x_{21}&x_{22}&x_{23}\\x_{31}&x_{32}&x_{33}\end{bmatrix},C.X=x_{11}+2x_{12}+3x_{13}+2x_{21}+9x_{22}+0x_{23}+3x_{31}+0x_{32}+7x_{33}=x_{11}+4x_{12}+6x_{13}+9x_{22}+0x_{23}+7x_{33} }[/math]

The SDP can be written as: Minimize [math]\displaystyle{ x_{11}+4x_{12}+6x_{13}+9x_{22}+0x_{23}+7x_{33}\\ s.t. x_{11}+0x_{12}+2x_{13}+3x_{22}+14x_{23}+5x_{33}=11 \\ 0x_{11}+4x_{12}+16x_{13}+6x_{22}+0x_{23}+4x_{33}=19 \\ X=\begin{bmatrix}x_{11}&x_{12}&x_{13}\\x_{21}&x_{22}&x_{23}\\x_{31}&x_{32}&x_{33}\end{bmatrix} \geq 0 }[/math]



References

2016