Sequential Decision-Making Task

(Redirected from sequential decision-making)
Jump to: navigation, search

A Sequential Decision-Making Task is a Sequence Learning Task that consists of selection an action to accomplish a goal in the future.



  • (Wikipedia, 2019) ⇒ Retrieved:2019-2-24.
    • Sequence learning problems are used to better understand the different types of sequence learning. There are four basic sequence learning problems: sequence prediction, sequence generation, sequence recognition, and sequential decision making. These “problems” show how sequences are formulated. They show the patterns sequences follow and how these different sequence learning problems are related to each other.

      Sequence prediction attempts to predict the next immediate element of a sequence based on all the preceding elements. Sequence generation is basically the same as sequence prediction: an attempt to piece together a sequence one by one the way it naturally occurs. Sequence recognition takes certain criteria and determines whether the sequence is legitimate. Sequential decision making or sequence generation through actions breaks down into three variations: goal-oriented, trajectory-oriented, and reinforcement-maximizing. These three variations all want to pick the action(s) or step(s) that will lead to the goal in the future. These sequence learning problems reflect hierarchical organization of plans because each element in the sequences builds on the previous elements. In a classic experiment published in 1967, Alfred L. Yarbus demonstrated that though subjects viewing portraits reported apprehending the portrait as a whole, their eye movements successively fixated on the most informative parts of the image. These observations suggest that underlying an apparently parallel process of face perception, a serial oculomotor process is concealed. [1] It is a common observation that when a skill is being acquired, we are more attentive in the initial phase, but after repeated practice, the skill becomes nearly automatic; [2] this is also known as unconscious competence. We can then concentrate on learning a new action while performing previously learned actions skillfully. Thus, it appears that a neural code or representation for the learned skill is created in our brain, which is usually called procedural memory. The procedural memory encodes procedures or algorithms rather than facts.

  1. Yarbus, Alfred L., "Eye movements during perception of complex objects", Yarbus, Alfred L., tr. Basil Haigh, ed. Lorrin A. Riggs, Eye Movements and Vision, New York: Plenum, 1967, OCLC 220267263, ch. 7, pp. 171–96.
  2. Fitts, P. M., "Perceptual motor skill learning", in Arthur W. Melton (ed.), Categories of Human Learning, New York: Academic Press, 1964, OCLC 180195, pp. 243–85.