sklearn.ensemble Module
(Redirected from sklearn.ensemble)
Jump to navigation
Jump to search
An sklearn.ensemble Module is an sklearn module that contains a collection of decision tree ensemble learning systems.
- Context:
- It can (often) reference a sklearn.tree system.
sklearn.tree.Model_Name(self, arguments)or simplysklearn.tree.Model_Name()where DTName is the name of the selected decision tree ensemble learning system.
- It can (often) reference a sklearn.tree system.
- Example(s)
sklearn.ensemble.AdaBoostClassifierAn AdaBoost classifier.sklearn.ensemble.AdaBoostRegressorAn AdaBoost regressor.sklearn.ensemble.BaggingClassifierA Bagging classifier.sklearn.ensemble.BaggingRegressorA Bagging regressor.sklearn.ensemble.ExtraTreesClassifierAn Ensemble Extra Trees Classifier.sklearn.ensemble.ExtraTreesRegressorAn Ensemble Extra Trees Regressor.sklearn.ensemble.GradientBoostingClassifierGradient Boosting Classifier.sklearn.ensemble.GradientBoostingRegressorGradient Boosting Regressor.sklearn.ensemble.IsolationForestIsolation Forest Algorithm.sklearn.ensemble.RandomForestClassifierA Random Forest Classifier.sklearn.ensemble.RandomForestRegressorA Random Forest Regressor.sklearn.ensemble.RandomTreesEmbeddingA Totally Random Trees Embedding System.sklearn.ensemble.VotingClassifierSoft Voting/Majority Rule Classifier for unfitted estimators.- …
- Counter-Example(s):
sklearn.svm, a collection of Support Vector Machine algorithms.sklearn.manifold, a collection of Manifold Learning Systems.sklearn.tree, a collection of Decision Tree Learning Systems.sklearn.metrics, a collection of Metrics Subroutines.sklearn.covariance,a collection of Covariance Estimators.sklearn.cluster.bicluster, a collection of Spectral Biclustering Algorithms.sklearn.linear_model, a collection of Linear Model Regression Systems.sklearn.neighbors, a collection of K Nearest Neighbors Algorithms.sklearn.neural_network, a collection of Neural Network Systems.
- See: Decision Trees, Regression Task, Classification Task, Ensemble Learning, sklearn Boston Dataset-based Regression Trees Evaluation Task.
References
2017
- (Scikit Learn, 2017) ⇒ http://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble Retrieved:2017-10-22
- QUOTE: The sklearn.ensemble module includes ensemble-based methods for classification, regression and anomaly detection.
User guide: See the Ensemble methods section for further details.
ensemble.AdaBoostClassifier([…])An AdaBoost classifier.ensemble.AdaBoostRegressor([base_estimator, …])An AdaBoost regressor.ensemble.BaggingClassifier([base_estimator, …])A Bagging classifier.ensemble.BaggingRegressor([base_estimator, …])A Bagging regressor.ensemble.ExtraTreesClassifier([…])An extra-trees classifier.ensemble.ExtraTreesRegressor([n_estimators, …])An extra-trees regressor.ensemble.GradientBoostingClassifier([loss, …])Gradient Boosting for classification.ensemble.GradientBoostingRegressor([loss, …])Gradient Boosting for regression.ensemble.IsolationForest([n_estimators, …])Isolation Forest Algorithm.ensemble.RandomForestClassifier([…])A random forest classifier.ensemble.RandomForestRegressor([…])A random forest regressor.ensemble.RandomTreesEmbedding([…])An ensemble of totally random trees.ensemble.VotingClassifier(estimators[, …])Soft Voting/Majority Rule classifier for unfitted estimators.partial dependence
ensemble.partial_dependence.partial_dependence(…), Partial dependence of target_variables.ensemble.partial_dependence.plot_partial_dependence(…), Partial dependence plots for features.
- QUOTE: The sklearn.ensemble module includes ensemble-based methods for classification, regression and anomaly detection.