2002 IntroToTheSpecialIssueOnSummarization

From GM-RKB
Jump to: navigation, search

Subject Headings: Automatic Text Summarization.

Notes

Cited By

Quotes

References

  • 1. James Allan, Rahul Gupta, Vikas Khandelwal, Temporal summaries of new topics, Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval, p.10-18, September 2001, New Orleans, Louisiana, United States doi:10.1145/383952.383954
  • 2. Aone, Chinatsu, Mary Ellen Okurowski, James Gorlinsky, and Bjornar Larsen. (1999). A trainable summarizer with knowledge acquired from robust NLP techniques. In I. Mani and M. T. Maybury, editors, Advances in Automatic Text Summarization. MIT Press, Cambridge, pages 71-80.
  • 3. Barzilay, Regina and Michael Elhadad. (1997). Using lexical chains for text summarization. In: Proceedings of the ACL/EACL'97 Workshop on Intelligent Scalable Text Summarization, pages 10-17, Madrid, July.
  • 4. Barzilay, Regina and Michael Elhadad. (1999). Using lexical chains for text summarization. In I. Mani and M. T. Maybury, editors, Advances in Automatic Text Summarization. MIT Press, Cambridge, pages 111-121.
  • 5. Regina Barzilay, Noemie Elhadad, Kathleen R. McKeown, Sentence ordering in multidocument summarization, Proceedings of the first International Conference on Human language technology research, p.1-7, March 18-21, 2001, San Diego doi:10.3115/1072133.1072217
  • 6. Regina Barzilay, Kathleen R. McKeown, Michael Elhadad, Information fusion in the context of multi-document summarization, Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics on Computational Linguistics, p.550-557, June 20-26, 1999, College Park, Maryland doi:10.3115/1034678.1034760
  • 7. Baxendale, P. B. 1958. Man-made Index for technical literature-An experiment. IBM Journal of Research and Development, 2(4):354-361.
  • 8. Borko, H. and C. Bernier. 1975. Abstracting Concepts and Methods. Academic Press, New York.
  • 9. Ronald Brandow, Karl Mitze, Lisa F. Rau, Automatic condensation of electronic publications by sentence selection, Information Processing and Management: an International Journal, v.31 n.5, p.675-685, Sept. 1995 doi:10.1016/0306-4573(95)00052-I
  • 10. Buckley, Chris and Claire Cardie. (1997). Using empire and smart for high-precision IR and summarization. In: Proceedings of the TIPSTER Text Phase III 12-Month Workshop, San Diego, CA, October.
  • 11. Jaime Carbonell, Y. Geng, and Jade Goldstein. (1997). Automated query-relevant summarization and diversity-based reranking. In: Proceedings of the IJCAI-97 Workshop on AI in Digital Libraries, pages 12-19..
  • 12. Jaime Carbonell, Jade Goldstein, The use of MMR, diversity-based reranking for reordering documents and producing summaries, Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval, p.335-336, August 24-28, 1998, Melbourne, Australia doi:10.1145/290941.291025
  • 13. Jean Carletta, Assessing Agreement on Classification Tasks: The kappa Statistic, Computational Linguistics, v.22 n.2, June 1996.
  • 14. John M. Conroy, Dianne P. O'leary, Text summarization via hidden Markov models, Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval, p.406-407, September 2001, New Orleans, Louisiana, United States doi:10.1145/383952.384042
  • 15. Cremmins, Edward T. (1996). The Art of Abstracting. Information Resources Press, Arlington, VA, second edition.
  • 16. DeJong, Gerald Francis. 1978. Fast Skimming of News Stories: The FRUMP System. Ph.D. thesis, Yale University, New Haven, CT.
  • 17. Robert L. Donaway, Kevin W. Drummey, Laura A. Mather, A comparison of rankings produced by summarization evaluation measures, NAACL-ANLP 2000 Workshop on Automatic summarization, p.69-78, April 30-30, 2000, Seattle, Washington doi:10.3115/1117575.1117583.
  • 18. H. P. Edmundson, New Methods in Automatic Extracting, Journal of the ACM (JACM), v.16 n.2, p.264-285, April 1969 doi:10.1145/321510.321519
  • 19. Firmin, T. and M. J. Chrzanowski. (1999). An evaluation of automatic text summarization systems. In I. Mani and M. T. Maybury, editors, Advances in Automatic Text Summarization. MIT Press, Cambridge, pages 325-336..
  • 20. Jade Goldstein, Mark Kantrowitz, Vibhu Mittal, Jaime Carbonell, Summarizing text documents: sentence selection and evaluation metrics, Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, p.121-128, August 15-19, 1999, Berkeley, California, United States doi:10.1145/312624.312665
  • 21. Hahn, Udo and Donna Harman, editors. (2002). Proceedings of the Document Understanding Conference (DUC-02). Philadelphia, July.
  • 22. Hahn, Udo and Ulrich Reimer. (1997). Knowledge-based text summarization: Salience and generalization operators for knowledge base abstraction. In I. Mani and M. Maybury, editors, Advances in Automatic Text Summarization. MIT Press, Cambridge, pages 215-232.
  • 23. Harman, Donna and Daniel Marcu, editors. (2001). Proceedings of the Document Understanding Conference (DUC-01). New Orleans, September.
  • 24. Hovy, E. and C.-Y. Lin. (1999). Automated text summarization in SUMMARIST. In I. Mani and M. T. Maybury, editors, Advances in Automatic Text Summarization. MIT Press, Cambridge, pages 81-94.
  • 25. Hongyan Jing, Using hidden Markov modeling to decompose human-written summaries, Computational Linguistics, v.28 n.4, p.527-543, December 2002 doi:10.1162/089120102762671972.
  • 26. Hongyan Jing, Kathleen R. McKeown, The decomposition of human-written summary sentences, Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, p.129-136, August 15-19, 1999, Berkeley, California, United States doi:10.1145/312624.312666
  • 27. Jing, Hongyan, Kathleen McKeown, Regina Barzilay, and Michael Elhadad. (1998). Summarization evaluation methods: Experiments and analysis. In Intelligent Text Summarization: Papers from the 1998 AAAI Spring Symposium, Stanford, CA, 23-25 March. Technical Report SS-98-06. AAAI Press, pages 60-68.
  • 28. Kevin Knight, Daniel Marcu, Statistics-based Summarization - Step One: Sentence Compression, Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence, p.703-710, July 30-August 03, 2000.
  • 29. Julian Kupiec, Jan Pedersen, Francine Chen, A trainable document summarizer, Proceedings of the 18th annual international ACM SIGIR conference on Research and development in information retrieval, p.68-73, July 09-13, 1995, Seattle, Washington, United States doi:10.1145/215206.215333
  • 30. Chin-Yew Lin, Eduard Hovy, Identifying topics by position, Proceedings of the fifth Conference on Applied Natural Language Processing, p.283-290, March 31-April 03, 1997, Washington, DC doi:10.3115/974557.974599.
  • 31. Chin-Yew Lin, Training a selection function for extraction, Proceedings of the eighth International Conference on Information and knowledge management, p.55-62, November 02-06, 1999, Kansas City, Missouri, United States doi:10.1145/319950.319957
  • 32. Lin, Chin-Yew. (2001). Summary evaluation environment. http://www.isi.edu/cyl/SEE.
  • 33. Chin-Yew Lin, Eduard Hovy, From single to multi-document summarization: a prototype system and its evaluation, Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, July 07-12, 2002, Philadelphia, Pennsylvania doi:10.3115/1073083.1073160
  • 34. Chin-Yew Lin, Eduard Hovy, Manual and automatic evaluation of summaries, Proceedings of the ACL-02 Workshop on Automatic Summarization, p.45-51, July 11-12, 2002, Phildadelphia, Pennsylvania doi:10.3115/1118162.1118168
  • 35. Luhn, H. P. 1958. The automatic creation of literature abstracts. IBM Journal of Research Development, 2(2):159-165.
  • 36. Mani, Inderjeet. (2001). Automatic Summarization. John Benjamins, Amsterdam/Philadelphia.
  • 37. Mani, Inderjeet and Eric Bloedorn. (1997). Multi-document summarization by graph search and matching. In: Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI-97), Providence, RI. American Association for Artificial Intelligence, pages 622-628.
  • 38. Inderjeet Mani, Barbara Gates, Eric Bloedorn, Improving summaries by revising them, Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics on Computational Linguistics, p.558-565, June 20-26, 1999, College Park, Maryland doi:10.3115/1034678.1034761
  • 39. Mani, Inderjeet, David House, G. Klein, Lynette Hirshman, Leo Obrst, Thérèse Firmin, Michael Chrzanowski, and Beth Sundheim. (1998). The TIPSTER SUMMAC text summarization evaluation. Technical Report MTR 98W0000138, The Mitre Corporation, McLean, VA.
  • 40. Mark T. Maybury, Inderjeet Mani, Advances in Automatic Text Summarization, MIT Press, Cambridge, MA, 1999
  • 41. Marcu, Daniel. 1997a. From discourse structures to text summaries. In: Proceedings of the ACL'97/EACL'97 Workshop on Intelligent Scalable Text Summarization, Madrid, July 11, pages 82-88.
  • 42. Daniel C. Marcu, Graeme Hirst, The rhetorical parsing, summarization, and generation of natural language texts, 1998.
  • 43. Daniel Marcu, The automatic construction of large-scale corpora for summarization research, Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, p.137-144, August 15-19, 1999, Berkeley, California, United States doi:10.1145/312624.312668
  • 44. Marcu, Daniel and Laurie Gerber. (2001). An inquiry into the nature of multidocument abstracts, extracts, and their evaluation. In: Proceedings of the NAACL-2001 Workshop on Automatic Summarization, Pittsburgh, June. NAACL, pages 1-8.
  • 45. Kathleen R. McKeown, Judith L. Klavans, Vasileios Hatzivassiloglou, Regina Barzilay, Eleazar Eskin, Towards multidocument summarization by reformulation: progress and prospects, Proceedings of the sixteenth national conference on Artificial intelligence and the eleventh Innovative applications of artificial intelligence conference innovative applications of artificial intelligence, p.453-460, July 18-22, 1999, Orlando, Florida, United States.
  • 46. Kathleen McKeown, Dragomir R. Radev, Generating summaries of multiple news articles, Proceedings of the 18th annual international ACM SIGIR conference on Research and development in information retrieval, p.74-82, July 09-13, 1995, Seattle, Washington, United States doi:10.1145/215206.215334
  • 47. Kenji Ono, Kazuo Sumita, Seiji Miike, Abstract generation based on rhetorical structure extraction, Proceedings of the 15th conference on Computational linguistics, August 05-09, 1994, Kyoto, Japan doi:10.3115/991886.991946
  • 48. Jahna C. Otterbacher, Dragomir R. Radev, Airong Luo, Revisions that improve cohesion in multi-document summaries: a preliminary study, Proceedings of the ACL-02 Workshop on Automatic Summarization, p.27-36, July 11-12, 2002, Phildadelphia, Pennsylvania doi:10.3115/1118162.1118166
  • 49. Papineni, K., S. Roukos, T. Ward, and W.-J. Zhu. (2001). BLEU: A method for automatic evaluation of machine translation. Research Report RC22176, IBM.
  • 50. Radev, Dragomir, Simone Teufel, Horacio Saggion, Wai Lam, John Blitzer, Arda Celebi, Hong Qi, Elliott Drabek, and Danyu Liu. (2002). Evaluation of text summarization in a cross-lingual information retrieval framework. Technical Report, Center for Language and Speech Processing, Johns Hopkins University, Baltimore, June.
  • 51. Dragomir R. Radev, Hongyan Jing, Malgorzata Budzikowska, Centroid-based summarization of multiple documents: sentence extraction, utility-based evaluation, and user studies, NAACL-ANLP 2000 Workshop on Automatic summarization, p.21-30, April 30-30, 2000, Seattle, Washington doi:10.3115/1117575.1117578
  • 52. Dragomir R. Radev, Kathleen R. McKeown, Generating natural language summaries from multiple on-line sources, Computational Linguistics, v.24 n.3, September 1998.
  • 53. Lisa F. Rau, Paul S. Jacobs, Creating segmented databases from free text for text retrieval, Proceedings of the 14th annual international ACM SIGIR conference on Research and development in information retrieval, p.337-346, October 13-16, 1991, Chicago, Illinois, United States doi:10.1145/122860.122894
  • 54. Hpracop Saggion, Guy Lapalme, Generating indicative-informative summaries with sumUM, Computational Linguistics, v.28 n.4, p.497-526, December 2002 doi:10.1162/089120102762671963
  • 55. Gerard Salton, Amit Singhal, Mandar Mitra, Chris Buckley, Automatic text structuring and summarization, Information Processing and Management: an International Journal, v.33 n.2, p.193-207, March 1997 doi:10.1016/S0306-4573(96)00062-3
  • 56. H. Grogory Silber, Kathleen F. McCoy, Efficiently computed lexical chains as an intermediate representation for automatic text summarization, Computational Linguistics, v.28 n.4, p.487-496, December 2002 doi:10.1162/089120102762671954
  • 57. Sparck Jones, Karen. (1999). Automatic summarizing: Factors and directions. In I. Mani and M. T. Maybury, editors, Advances in Automatic Text Summarization. MIT Press, Cambridge, pages 1-13.
  • 58. Strzalkowski, Tomek, Gees Stein, J. Wang, and Bowden Wise. (1999). A robust practical text summarizer. In I. Mani and M. T. Maybury, editors, Advances in Automatic Text Summarization. MIT Press, Cambridge, pages 137-154.
  • 59. Simone Teufel, Marc Moens, Summarizing scientific articles: experiments with relevance and rhetorical status, Computational Linguistics, v.28 n.4, p.409-445, December 2002 doi:10.1162/089120102762671936
  • 60. Michael White, Claire Cardie, Selecting sentences for multidocument summaries using randomized local search, Proceedings of the ACL-02 Workshop on Automatic Summarization, p.9-18, July 11-12, 2002, Phildadelphia, Pennsylvania doi:10.3115/1118162.1118164.
  • 61. Michael J. Witbrock, Vibhu O. Mittal, Ultra-summarization (poster abstract): a statistical approach to generating highly condensed non-extractive summaries, Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, p.315-316, August 15-19, 1999, Berkeley, California, United States doi:10.1145/312624.312748
  • 62. Klaus Zechner, Automatic summarization of open-domain multiparty dialogues in diverse genres, Computational Linguistics, v.28 n.4, p.447-485, December 2002 doi:10.1162/089120102762671945,


 AuthorvolumeDate ValuetitletypejournaltitleUrldoinoteyear
2002 IntroToTheSpecialIssueOnSummarizationDragomir Radev
Eduard Hovy
Kathleen R. McKeown
Introduction to the Special Issue on SummarizationComputational Linguistics Research Areahttp://acl.ldc.upenn.edu/J/J02/J02-4001.pdf2002