Kernel Regression Algorithm: Difference between revisions

From GM-RKB
Jump to navigation Jump to search
m (Text replacement - "([^\s])([\s]{1,7})\<P\>" to "$1 <P>")
m (Text replacement - "\<P\>([\s]{1,7})([^\s])" to "<P> $2")
Line 17: Line 17:
=== 2015 ===
=== 2015 ===
* (Wikipedia, 2015) ⇒ http://en.wikipedia.org/wiki/kernel_regression Retrieved:2015-1-14.
* (Wikipedia, 2015) ⇒ http://en.wikipedia.org/wiki/kernel_regression Retrieved:2015-1-14.
** The '''kernel regression</B> is a [[non-parametric technique]] in statistics to estimate the [[conditional expectation]] of a [[random variable]]. The objective is to find a non-linear relation between a pair of random variables <B><i>X</i></B> and <B><i>Y</i></B>.        <P> In any [[nonparametric regression]], the [[conditional expectation]] of a variable <math>Y</math> relative to a variable <math>X</math> may be written:        <P> <math>\operatorname{E}(Y | X) = m(X)</math>        <P> where <math>m</math> is an unknown function.
** The '''kernel regression</B> is a [[non-parametric technique]] in statistics to estimate the [[conditional expectation]] of a [[random variable]]. The objective is to find a non-linear relation between a pair of random variables <B><i>X</i></B> and <B><i>Y</i></B>.        <P>       In any [[nonparametric regression]], the [[conditional expectation]] of a variable <math>Y</math> relative to a variable <math>X</math> may be written:        <P>       <math>\operatorname{E}(Y | X) = m(X)</math>        <P>       where <math>m</math> is an unknown function.


=== 2007 ===
=== 2007 ===

Revision as of 00:30, 19 August 2021

A Kernel Regression Algorithm is a non-parametric regression algorithm that can be implemented by a kernel regression system to solve a kernel regression task.



References

2017

2015

2007

  • (Weinberger & Tesauro, 2007) ⇒ K.Q. Weinberger, G. Tesauro. (2007). “Metric Learning for Kernel Regression.” In: Proceedings of International Workshop on Artificial Intelligence and Statistics.

2003

1999

1997