Abstractive-based Text Summarization Algorithm: Difference between revisions

From GM-RKB
Jump to navigation Jump to search
No edit summary
m (Text replacement - "ions]] " to "ion]]s ")
 
Line 22: Line 22:


=== 2018b ===
=== 2018b ===
* ([[2018_GeneratingWikipediabySummarizin|Liu et al., 2018]]) ⇒ [[Peter J. Liu]], [[Mohammad Saleh]], [[Etienne Pot]], [[Ben Goodrich]], [[Ryan Sepassi]], [[Lukasz Kaiser]], and [[Noam Shazeer]]. ([[2018]]). “[https://arxiv.org/pdf/1801.10198 Generating Wikipedia by Summarizing Long Sequences].” In: [[Proceedings of the Sixth International Conference on Learning Representations]] ([[ICLR-2018]]).
* ([[2018_GeneratingWikipediabySummarizin|Liu et al., 2018]]) ⇒ [[Peter J. Liu]], [[Mohammad Saleh]], [[Etienne Pot]], [[Ben Goodrich]], [[Ryan Sepassi]], [[Lukasz Kaiser]], and [[Noam Shazeer]]. ([[2018]]). “[https://arxiv.org/pdf/1801.10198 Generating Wikipedia by Summarizing Long Sequences].” In: [[Proceedings of the Sixth International Conference on Learning Representation]]s ([[ICLR-2018]]).
** QUOTE: [[2018_GeneratingWikipediabySummarizin|We]] show that [[text document generation|generating]] [[English Wikipedia article]]s can be approached as a [[multi-document summarization]] of [[source document]]s. </s> [[2018_GeneratingWikipediabySummarizin|We]] use [[extractive summarization]] to coarsely identify [[salient information]] and a [[neural abstractive model]] to generate the [[article]]. </s>  …
** QUOTE: [[2018_GeneratingWikipediabySummarizin|We]] show that [[text document generation|generating]] [[English Wikipedia article]]s can be approached as a [[multi-document summarization]] of [[source document]]s. </s> [[2018_GeneratingWikipediabySummarizin|We]] use [[extractive summarization]] to coarsely identify [[salient information]] and a [[neural abstractive model]] to generate the [[article]]. </s>  …



Latest revision as of 07:26, 22 August 2024

An Abstractive-based Text Summarization Algorithm is a text summarization algorithm that can significantly transform the underlying text.



References

2022b

2018a

2018b

2017

2015