Object-Oriented Programming Language
Jump to navigation
Jump to search
An Object-Oriented Programming Language is a programming language that follows a programming language paradigm that supports an object-oriented programming paradigm (e.g. with software classes and software objects).
- Context:
- It can attempt to make every program element an object, including Software Constants or Software Functions.
- Example(s):
- Counter-Example(s):
- a Procedural Programming Language, such as C.
- a Functional Programming Language.
- See: Object-Oriented Program.
References
2013
- http://en.wikipedia.org/wiki/Object-oriented_programming
- Object-oriented programming (OOP) is a programming paradigm that represents concepts as “objects” that have data fields (attributes that describe the object) and associated procedures known as methods. Objects, which are usually instances of classes, are used to interact with one another to design applications and computer programs.[1][2] C++, Objective-C, Smalltalk, Java and C# are examples of object-oriented programming languages.
- ↑ Kindler, E.; Krivy, I. (2011). Object-Oriented Simulation of systems with sophisticated control. International Journal of General Systems. pp. 313–343.
- ↑ Lewis, John; Loftus, William (2008). Java Software Solutions Foundations of Programming Design 6th ed. Pearson Education Inc.. ISBN 0-321-53205-8., section 1.6 "Object-Oriented Programming"
- (Chisnall, 2013) ⇒ David Chisnall. (2013). “The Challenge of Cross-language Interoperability.” In: Queue Journal, 11(10). doi:10.1145/2542661.2543971
- QUOTE: Object-oriented languages bind some notion of code and data together. Alan Kay, who helped develop object-oriented programming while at Xerox PARC, described objects as "simple computers that communicate via message passing." This definition leaves a lot of leeway for different languages to fill in the details:
- Should there be factory objects (classes) as first-class constructs in the language?
- If there are classes, are they also objects?
- Should there be zero (e.g., Go), one (e.g., Smalltalk, Java, JavaScript, Objective-C), or many (e.g., C++, Self, Simula) superclasses or prototypes for an]]object]]?
- Is method lookup tied to the static type system (if there is one)?
- Is the data contained within an object of static or dynamic layout?
- Is it possible to modify method lookup at runtime?
- The question of multiple inheritance is one of the most common areas of focus. Single inheritance is convenient, because it simplifies many aspects of the implementation. Objects can be extended just by appending fields; a cast to the supertype just involves ignoring the end, and a cast to a subtype just involves a check — the pointer values remain the same. Downcasting in C++ requires a complex search of the inheritance graph in the run-time type information via a runtime library function.
- QUOTE: Object-oriented languages bind some notion of code and data together. Alan Kay, who helped develop object-oriented programming while at Xerox PARC, described objects as "simple computers that communicate via message passing." This definition leaves a lot of leeway for different languages to fill in the details:
2011
- http://en.wikipedia.org/wiki/Object-oriented_programming#OOP_languages
- Concerning the degree of object orientation, following distinction can be made:
- Languages called "pure" OO languages, because everything in them is treated consistently as an object, from primitives such as characters and punctuation, all the way up to whole classes, prototypes, blocks, modules, etc. They were designed specifically to facilitate, even enforce, OO methods. Examples: Scala, Smalltalk, Eiffel, Ruby, JADE, Emerald.[1]
- Languages designed mainly for OO programming, but with some procedural elements. Examples: C++, C#, VB.NET, Java, Python. (Note: C# and VB.NET are both exclusively part of Microsoft's .NET Framework development platform and compile to the same intermediate language (IL). Although there are some construct differences, they are minimal and in the context of this grouping, some might consider them part of one language with simply two syntax translation engines).
- Languages that are historically procedural languages, but have been extended with some OO features. Examples: Visual Basic (derived from BASIC), Fortran 2003, Perl, COBOL 2002, PHP, ABAP.
- Languages with most of the features of objects (classes, methods, inheritance, reusability), but in a distinctly original form. Examples: Oberon (Oberon-1 or Oberon-2) and Common Lisp.
- Languages with abstract data type support, but not all features of object-orientation, sometimes called object-based languages. Examples: Modula-2 (with excellent encapsulation and information hiding), Pliant, CLU.
- Concerning the degree of object orientation, following distinction can be made:
- ↑ "The Emerald Programming Language". http://www.emeraldprogramminglanguage.org/. Retrieved 2011-02-26.